Skip to main content

Advertisement

Log in

High-rate electrochemical performance and structure elucidation of hydrothermally synthesized nickel zincate nanorods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For the first time, nanorods of nickel zincate (NiZnO2) have been synthesized by the hydrothermal method and used in supercapacitor electrode fabrication. The X-ray photoelectron spectroscopy and X-ray diffraction study elucidated the preferred oxidation states of Ni and Zn ions in the cubic crystal of NiZnO2 as well as revealed the bonding parameters in the unit cell. The scanning electron micrograph and transmission electron micrograph study established nanorod structure synthesized by hydrothermal method. The specific capacitance performance was revealed by NiZnO2 materials based on the existence of electroactive species, like Ni2+ (d8) and Zn2+ (d10). The obtained specific capacitance from the charge–discharge curve is 984 F/g at 0.4 A/g current density in 1 M Na2SO4. The calculated specific energy and specific power are 68.32 Wh kg−1 and 210 W kg−1, respectively. The cyclic stability test showed 84% capacitance retention and 99% Coulombic efficiency after 10,000 cycles, indicating its remarkable stability. The excellent rate performance of NiZnO2 nanorod-based supercapacitor is reflected by 0.84 s relaxation time which infers that the cell can deliver energy within a second.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ji Z, Liu K, Li N, Zhang H, Dai W, Shen X, Zhu G, Kong L, Yua A (2020) Nitrogen-doped carbon dots anchored NiO/Co3O4 ultrathin nanosheets as advanced cathodes for hybrid supercapacitors. J Colloid Interf Sci 579: 282–289. https://doi.org/10.1016/jjcis.2020.06.070

  2. Nandi D, Mohan VB, Bhowmick AK, Bhattacharyya D (20220) Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J Mat Sci 55:6375–6400. https://doi.org/10.1007/s10853-020-04475-z

  3. Yazdi MS, Hosseini SA, Karami Z, Olamaee A, Abedini M, Moghanian A (2021) Mixed ternary metal MFeCo (M = Al, Mg, Cu, Zn, or Ni) oxide electrodes for high-performance energy storage devices. Ionics 27:3777–3791. https://doi.org/10.1007/s11581-021-04138-2

    Article  CAS  Google Scholar 

  4. Nandi D, Ghosh AK, Gupta K, De A, Sen P, Chowdhury AD, Ghosh UC (2012) Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: synthesis, characterization with tunable electrical and electrochemical properties. Mat Res Bull 47:2095–2103. https://doi.org/10.1016/j.materresbull.2012.03.040

    Article  CAS  Google Scholar 

  5. Nandi D, Ghosh AK, De A, Sen P, Ghosh UC (2014) Fabrication, nanostructure evaluation, 3D electrical transport and electrochemical capacitance of PEDOT–Ti(IV)-doped iron(III) oxide nanocomposite. J Mat Sci 49:776–785. https://doi.org/10.1007/s10853-013-7760-4

    Article  CAS  Google Scholar 

  6. Majumdar S, Sen P, Ray R (2022) Graphene oxide induced high dielectricity in CS/PMMA solid polymer electrolytes and the enhanced specific capacitance with Ag decorated MnCoFeO4 nanoparticles anchored graphene sheets in hybrid solid-state supercapacitors. Mat Res Bull 151:111814. https://doi.org/10.1016/j.materresbull.2022.111814

    Article  CAS  Google Scholar 

  7. Mughal AS, Zawar S, Ansar MT, Afzal F, Murtaza G, Atiq S, Ramay SM (2022) Efficient electrochemical performance of hydrothermally synthesized mixed transition metal oxide nanostructures. Ionics 28:2469–2479

    Article  CAS  Google Scholar 

  8. Mahdavi H, Norouzi P, Yari F (2022) Fabrication of ternary supercapacitor electrode using nickel cobaltite nanosheets to polyaniline/graphene oxide. Ionics. https://doi.org/10.1007/s11581-022-04495-6

    Article  Google Scholar 

  9. Bhaumik M, Raju K, Arunachellan I, Ludwigd T, Mathe MK, Maity A, Mathur S (2020) High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres. Electrochim Acta 342:136111. https://doi.org/10.1016/j.electacta.2020.136111

    Article  CAS  Google Scholar 

  10. Toupin M, Brousse T, Bélanger D (2004) Charge storage ́ mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190. https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  11. Ren X, Lu H, Lin H, Liu Y, Xing Y (2010) Preparation and characterization of the Ti/IrO2/WO3 as supercapacitor electrode materials. Russian J Electrochem 46:77–80. https://doi.org/10.1134/S102319351001009X

    Article  CAS  Google Scholar 

  12. Yavuz A, Kaplan K, Bedir M (2022) Metal oxides composite electrode with high areal capacitance formed by thermal oxidation of stainless steel mesh. J Solid State Electrochem 26:1333–1347. https://doi.org/10.1007/s10008-022-05160-8

    Article  CAS  Google Scholar 

  13. Oliveira DA, da Silva RA, Orlandi MO (2022) Exploring ZnO nanostructures with reduced graphene oxide in layer-by-layer films as supercapacitor electrodes for energy storage. J Mater Sci. https://doi.org/10.1007/s10853-022-07089-9

    Article  Google Scholar 

  14. Kumar L, Boruah PK, Das MR, Deka S (2019) Superbending (0–180°) and high-voltage operating metal-oxide-based flexible supercapacitor. ACS Appl Mater Interfaces 11:37665–37674. https://doi.org/10.1021/acsami.9b11963

    Article  CAS  Google Scholar 

  15. Nandi D, Gnanaseelan M, Simon F, Pionteck J (2017) Unique nanopetals of nickel vanadate: crystal structure elucidation and supercapacitive performance. New J Chemistry 41:5620–5627. https://doi.org/10.1039/C6NJ03427F

    Article  CAS  Google Scholar 

  16. Chavan UJ, Yadav AA (2017) Electrochemical behavior of spray deposited mixed nickel manganese oxide thin films for supercapacitor applications. J Mater Sci: Mater Electron 28:4958–4964. https://doi.org/10.1007/s10854-016-6148-z

    Article  CAS  Google Scholar 

  17. Zhu D, Shao Y (2018) NiO/ZnO nanocomposite as electrode material for supercapacitors. Int J Electrochem Sci 13:3601–3612. https://doi.org/10.20964/2018.04.45

  18. Nagaraju YS, Ganesh H, Veeresh S, Vijeth H, Basappa M, Vandana M, Devendrappa H (2022) Single-step hydrothermal synthesis of ZnO/NiO hexagonal nanorods for high-performance supercapacitor application. Mat Sci Semicond Proc 142:06429(1–9). https://doi.org/10.1016/j.mssp.2021.106429

  19. Zheng Y, Kui S, Zhicheng W, Xiaofeng W, Xianghu K (2012) Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors. Appl Surf Sci 258(20):8117–8123

    Article  Google Scholar 

  20. Jiang X, Wang Z, Deng Q, Zhang F, Yon F, Chu Y (2018) Zinc-doped nickel oxide hollow microspheres – preparation hydrothermal synthesis and electrochemical properties. Eur J Inorg Chem 2018:4345–4348. https://doi.org/10.1002/ejic.201800888

    Article  CAS  Google Scholar 

  21. Abinaya C, Prasankumar T, Jose SP, Anitha K, Ekstrum C, Pearce JM, Mayandi J (2017) Synthetic method dependent physicochemical properties and electrochemical performance of Ni-doped ZnO. ChemistrySelect 2:9014–9023. https://doi.org/10.1002/slct.201701584

    Article  CAS  Google Scholar 

  22. Reddy N, Reddy V, Sreedhar A, Shim J, Cho M, Yoo K, Kim D (2018) Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136. https://doi.org/10.1016/j.jelechem.2018.09.048

    Article  CAS  Google Scholar 

  23. Acharya J, Ko TH, Seong JG, Seo MK, Khil MS, Kim HY, Kim BS (2020) Hybrid electrodes based on Zn–Ni–Co ternary oxide nanowires and nanosheets for ultra-high-rate asymmetric supercapacitors. ACS Appl Nano Mater 3(9):8679–8690. https://doi.org/10.1021/acsanm.0c01419

    Article  CAS  Google Scholar 

  24. Verma S, Khosla A, Arya S (2020) Performance of electrochemically synthesized nickel-zinc and nickel-iron (Ni-Zn//Ni-Fe) nanowires as battery type supercapacitor. J Electrochem Soc 167:120527. https://doi.org/10.1149/1945-7111/abaf72

    Article  CAS  Google Scholar 

  25. Wu C, Chen L, Lou X, Ding M, Jia C (2018) Fabrication of cobalt-nickel-zinc ternary oxide nanosheet and applications for supercapacitor electrode. Front Chem 6:597. https://doi.org/10.3389/fchem.2018.00597

    Article  CAS  Google Scholar 

  26. Nandi D, Parameswaranpillai J, Siengchin S (2021) Synthesis of three-dimensional graphene architectures from chicken feather and its unusual dimensional crossover in electronic conductivity. Nano-Struct Nano-Obj 25:100665 (1–7). https://doi.org/10.1016/j.nanoso.2020.100665

  27. Nandi D, Pulikkalparambil H, Radoor S, Jayakumar A, Kiatisereekul N, Siengchin S (2022) Solvothermal synthesis of nickel titanate nanosphere: crystal structure determination and high-rate supercapacitor performance. Chem Pap. https://doi.org/10.1007/s11696-022-02451-2

    Article  Google Scholar 

  28. Nandi D, Parameswaranpillai J, Siengchin S, Bhowmick AK (2020) The unique microsphere of ruthenium manganate: synthesis, structure elucidation, morphology analyses and magnetic property. Mat Chem Phys 246:122845. https://doi.org/10.1016/j.matchemphys.2020.122845

    Article  CAS  Google Scholar 

  29. Arsent’ev MY, Koval’ko NY, Shmigel’ AV, Tikhonov PA, Kalinina MV, (2017) NiMn2O4 spinel as a material for supercapacitors with a pseudocapacity effect. Glass Phys Chem 43:376–379. https://doi.org/10.1134/S1087659617040022

    Article  Google Scholar 

  30. He J, Hu J, Mo X, Hao Q, Fan Z, He G, Wang Y, Li W, He Q (2019) Novel photocatalyst nitrogen-doped simonkolleite Zn5(OH)8Cl2·H2O with vis-up-conversion photoluminescence and effective visible-light photocatalysis. Appl Phys A 125:3. https://doi.org/10.1007/s00339-018-2275-0

    Article  CAS  Google Scholar 

  31. Jain A, Aravindan V, Jayaraman S (2013) Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Sci Rep 3:3002. https://doi.org/10.1038/srep03002

    Article  Google Scholar 

  32. Gupta A, Sardana S, Dalal J, Lather S, Maan AS, Tripathi R, Puniaa R, Singh K, Ohlan A (2020) Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl Energy Mater 3:6434–6446. https://doi.org/10.1021/acsaem.0c00684.s001

    Article  CAS  Google Scholar 

  33. Hsiao SH, Liao YS (2017) Facile synthesis of electroactive and electrochromic triptycene poly(ether-imide)s containing triarylamine units via oxidative electro-coupling. Polymers 9(10):497. https://doi.org/10.3390/polym9100497

    Article  CAS  Google Scholar 

  34. Liu X, Xu N, Qian T, Liu J, Shen J, Yan C (2017) High coulombic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur. Nano Energy 41:758–764. https://doi.org/10.1016/j.nanoen.2017.10.032

    Article  CAS  Google Scholar 

  35. Elsaid MAM, Hassan AA, Mohamed SG, Sayed AZ, Ashmawy AM, Waheed AF (2021) Synthesis and electrochemical performance of porous FeCo2S4 nanorods as an electrode material for supercapacitor. J Energy Storage 44:103330. https://doi.org/10.1016/j.est.2021.103330

    Article  Google Scholar 

  36. Zheng J, Zhang R, Cheng K, Xu Z, Yu P, Wang X, Niu S (2019) Research on the high-performance electrochemical energy storage of a NiO@ ZnO (NZO) hybrid based on growth time. Crystals 9(1):4. https://doi.org/10.1002/smsc.202100021

    Article  CAS  Google Scholar 

  37. Di S, Gong L, Zhou B (2020) Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater Chem Phys 253:123289. https://doi.org/10.1016/j.matchemphys.2020.123289

    Article  CAS  Google Scholar 

  38. Srivastav S, Kant R (2011) Anomalous Warburg impedance: influence of uncompensated solution resistance. J Phys Chem C 115:12232–12242. https://doi.org/10.1021/jp2024632

    Article  CAS  Google Scholar 

  39. Mahera MD, Deshmukh AD, Dhoble SJ (2019) Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J Mat Sci 55:4213–4224. https://doi.org/10.1007/s10853-019-04236-7

    Article  CAS  Google Scholar 

  40. Ochai-Ejeh FO, Bello A, Dangbegnon J, Khaleed AA, Madito MJ, Bazegar F, Manyala N (2017) High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). J Mater Sci 52:10600–10613. https://doi.org/10.1007/s10853-017-1205-4

    Article  CAS  Google Scholar 

Download references

Funding

National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with Contract number KMUTNB-FF-66-01 and KMUTNB-Post-65-02 are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debabrata Nandi or Suchart Siengchin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1093 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, D., Jayakumar, A., Radoor, S. et al. High-rate electrochemical performance and structure elucidation of hydrothermally synthesized nickel zincate nanorods. J Solid State Electrochem 27, 195–206 (2023). https://doi.org/10.1007/s10008-022-05318-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05318-4

Keywords

Navigation