Skip to main content
Log in

Efficient electrochemical performance of hydrothermally synthesized mixed transition metal oxide nanostructures

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mixed transition metal oxides (MOs) have emerged as highly proficient electrode specimens owing to their outstanding capacitance values, thus, producing remarkable electrochemical outputs. In this context, hydrothermal method was used to synthesize MnCo2O4 nanostructures mediated via Ni substitution for better insight of optimized electrochemical features. The inverse spinel structure was observed throughout the as-synthesized series, while scanning electron microscope images exposed an increase in particle size by Ni substitution. Elemental mapping displays the exact pictorial visualization of doped compositions. An electrochemical window of 0.20–0.57 V along with varying scan rates of 0.009–0.08 Vs−1 was set for cyclic voltammetry (CV) measurements which manifested pseudo-capacitive behavior of compositions. The perceived Nyquist plot displayed less charge transfer resistance. All the obtained results along with keen analysis of micrographic images had given a firm assurance that the synthesized Mn0.1Ni0.9Co2O4 composition is extraordinarily advantageous nanostructure to be a potential candidate as electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cericola D, Kotz R (2012) Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. Electrochim Acta 72:1–17

    Article  CAS  Google Scholar 

  2. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031

    Article  CAS  PubMed  Google Scholar 

  3. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high performance electrodes for supercapacitors. Adv Mater 25(7):976–979

    Article  CAS  PubMed  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  5. Abruna HD, Kiya Y, Henderson JC (2008) Batteries and electrochemical capacitors. Phys Today 61(12):43–47

    Article  CAS  Google Scholar 

  6. Gomez J, Kalu EE (2013) High-performance binder-free Co-Mn composite oxide supercapacitor electrode. J Power Sources 230:218–224

    Article  CAS  Google Scholar 

  7. Zhang Y, Ma M, Yang J, Su H, Huang W, Dong X (2014) Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale 6(8):4303–4308

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203

    Article  CAS  Google Scholar 

  9. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Edit 53(6):1488–1504

    Article  CAS  Google Scholar 

  10. Gambou-Bosca A, Belanger D (2016) Electrochemical accessibility of porous submicron MnO2 spheres as active electrode materials for electrochemical capacitors. Electrochim Acta 201:20–29

    Article  CAS  Google Scholar 

  11. Wu CH, Ma JS, Lu CH (2012) Synthesis and characterization of nickel–manganese oxide via the hydrothermal route for electrochemical capacitors. Curr Appl Phys 12(4):1190–1194

    Article  Google Scholar 

  12. S. Sahoo, K.K. Naik, C.S. Rout, Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology, 26(45) (2015) 455401.

  13. Kong LB, Lu C, Liu MC, Luo YC, Kang L, Li X, Walsh FC (2014) The specific capacitance of sol-gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta 115:22–27

    Article  CAS  Google Scholar 

  14. Huang G, Xu S, Yang Y, Sun H, Xu Z (2016) Synthesis of porous MnCo2O4 microspheres with yolk-shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage. RSC Adv 6(13):10763–10774

    Article  CAS  Google Scholar 

  15. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474

    Article  CAS  Google Scholar 

  16. Hao P, Zhao Z, Li L, Tuan CC, Li H, Sang Y, Liu H, The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density, Nanoscale 7(34) (2015) 14401–14412.

  17. Pazhamalai P, Krishnamoorthy K, Mariappan VK, Sathyaseelan A, Kim SJ (2020) Solar driven renewable energy storage using rhenium disulfide nanostructure based rechargeable supercapacitors. Materials Chemistry Frontiers 4(11):3290–3301

    Article  CAS  Google Scholar 

  18. Uke SJ, Chaudhari GN, Kumar Y, Mardikar SP (2020) Tri-Ethanolamine-Ethoxylate assisted hydrothermal synthesis of nanostructured MnCo2O4 with superior electrochemical performance for high energy density supercapacitor application. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.675

    Article  Google Scholar 

  19. Li J, Xiong D, Wang L, Hirbod MKS, Li X (2019) High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors. J Energ Chem 37:66–72

    Article  Google Scholar 

  20. Sathyaseelan A, Kesavan D, Manoharan S, Mariappan VK, Krishnamoorthy K, Kim SJ (2021) Thermoelectric Driven Self-Powered Water Electrolyzer Using Nanostructured CuFeS2 Plates as Bifunctional Electrocatalyst. ACS Applied Energy Materials 4(7):7020–7029

    Article  CAS  Google Scholar 

  21. Kesavan D, Mariappan VK, Krishnamoorthy K, Kim SJ (2021) Carbothermal conversion of boric acid into boron-oxy-carbide nanostructures for high-power supercapacitors. Journal of Materials Chemistry A 9(2):915–921

    Article  CAS  Google Scholar 

  22. Rebekah A, Anantharaj S, Viswanthan C, Ponpandian N (2020) Zn-substituted MnCo2O4 nanostructure anchored over rGO for boosting the electrocatalytic performance towards methanol oxidation and oxygen evolution reaction (OER). Int J Hydrogen Energ 45(29):14713–14727

    Article  CAS  Google Scholar 

  23. Sannasi V, Subbian K (2020) High-pseudocapacitance of MnCo2O4 nanostructures prepared by phenolphthalein assisted hydrothermal and microwave methods, Ceram Int 15510–15520.

  24. Van Nguyen T, Van Thuy V, Thao VD, Hatsukano M, Higashimine K, Maenosono S, Thu TV (2020) Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton T 49(20):6718–6729

    Article  CAS  Google Scholar 

  25. Ansar MT, Ali A, Mustafa GM, Afzal F, Ishaq S, Kanwal F, Atiq S (2020) Polypyrrole-based nanocomposites architecture as multifunctional material for futuristic energy storage applications. J Alloy Compd 855:157341

    Article  Google Scholar 

  26. Quader A, Mustafa GM, Abbas SK, Ahmad H, Riaz S, Naseem S, Atiq S (2010) Efficient energy storage and fast switching capabilities in Nd-substituted La2Sn2O7 pyrochlores, Chem Eng J 125198

  27. Saravanakumar B, Ravi G, Ganesh V, Guduru RK, Yuvakkumar R (2019) MnCo2O4 nanosphere synthesis for electrochemical applications. Mater Sci Energ Tech 2(1):130–138

    Google Scholar 

  28. Uzzaman T, Zawar S, Ansar MT, Ramay SM, Mahmood A, Atiq S (2021) Electrochemical performance of NiFe2O4 nanostructures incorporating activated carbon as an efficient electrode material. Ceram Int 47:10733–10741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researcher’s Supporting Project Number (RSP-2021/71), King Saud University, Riyadh, Saudi Arabia, for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sidra Zawar or Shahid Atiq.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mughal, A.S., Zawar, S., Ansar, M.T. et al. Efficient electrochemical performance of hydrothermally synthesized mixed transition metal oxide nanostructures. Ionics 28, 2469–2479 (2022). https://doi.org/10.1007/s11581-022-04477-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04477-8

Keywords

Navigation