Skip to main content
Log in

Fabrication of ternary supercapacitor electrode using nickel cobaltite nanosheets to polyaniline/graphene oxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, a novel binder-free supercapacitor electrode is introduced based on a ternary polyaniline (PANI), graphene oxide (GO), and nickel cobaltite (MO) composite. To aim this, MO was synthesized via hydrothermal method in the presence of GO, followed by in situ oxidative polymerization of aniline to form GO-PANI-MO (GPMO) composite. FTIR spectroscopy and X-ray diffraction confirmed the formation of different components, while SEM illustrated fuzzy structure of MO existed on PANI-GO surface. GPMO exhibited a specific capacitance of 250 F/g in the current density of 10 μA/g, which was six-fold greater than the sole PANI electrode. This could be correlated to the high-specific surface area provided by fuzzy structure of MO. Moreover, this considerable electrochemical performance is the result of synergistic effect between the constructed materials owing both electric double-layer capacitive and pseudocapacitive properties. Also, this electrode had 97% capacity retention after 1000 cycles at the current density of 20 μA/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bo Y et al (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25(7):4079–4091

    Article  CAS  Google Scholar 

  2. Mahdavi H et al (2017) Synthesis and performance study of amino functionalized graphene aerogel grafted with polyaniline nanofibers as an efficient supercapacitor material. J Mater Sci: Mater Electron 28(5):4295–4305

    CAS  Google Scholar 

  3. Chen L et al (2018) Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@ polypyrrole@ graphene film. Chem Eng J 334:184–190

    Article  CAS  Google Scholar 

  4. Moyseowicz A et al (2017) Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors. Compos B Eng 109:23–29

    Article  CAS  Google Scholar 

  5. Allagui A et al (2018) Review of fractional-order electrical characterization of supercapacitors. J Power Sources 400:457–467

    Article  CAS  Google Scholar 

  6. Huang Z et al (2018) Polyaniline/graphene nanocomposites towards high-performance supercapacitors: a review. Composites Communications 8:83–91

    Article  Google Scholar 

  7. Gupta V, Miura NJML (2006) High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater Lett 60(12):1466–1469

  8. Khdary NH, Abdesalam ME, Enany GEJJ ot ES (2014) Mesoporous polyaniline films for high performance supercapacitors. J Electrochem Soc 161(9):G63

  9. Dhawale D, Vinu A, Lokhande CJEA (2011) Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim Acta 56(25):9482–9487

  10. Luo J et al (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81

    Article  CAS  Google Scholar 

  11. Hu N et al (2016) Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci Rep 6:19777

    Article  CAS  Google Scholar 

  12. Wu X et al (2016) Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim Acta 211:1066–1075

    Article  CAS  Google Scholar 

  13. Qu G et al (2016) Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl Mater Interfaces 8(32):20822–20830

    Article  CAS  Google Scholar 

  14. Bavio MA et al (2017) Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes. Energy 130:22–28

    Article  CAS  Google Scholar 

  15. Manoj M et al (2017) Polyaniline–graphene oxide based ordered nanocomposite electrodes for high-performance supercapacitor applications. J Mater Sci: Mater Electron 28(19):14323–14330

    CAS  Google Scholar 

  16. Zhang K et al (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401

  17. Lee T et al (2012) Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending. J Mater Chem 22(39):21092–21099

  18. Khalid M et al (2017) Polyaniline nanofibers–graphene oxide nanoplatelets composite thin film electrodes for electrochemical capacitors. RSC Advances 4(64):34168–34178

  19. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12(1):387

    Article  Google Scholar 

  20. Bonaccorso F et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501

    Article  Google Scholar 

  21. Sankar KV, Selvan RK (2016) Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances. Electrochim Acta 213:469–481

    Article  Google Scholar 

  22. Kandasamy SK, Kandasamy K (2018) Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J Inorg Organomet Polym Mater 28:559–584

  23. Muzaffar A et al (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev 101:123–145

    Article  CAS  Google Scholar 

  24. Pant B et al (2018) Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J Colloid Interface Sci 522:40–47

  25. Han G et al (2014) MnO 2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci Rep 4:4824

    Article  Google Scholar 

  26. Lin H et al (2016) Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim Acta 191:444–451

    Article  CAS  Google Scholar 

  27. Su H et al (2012) Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci 14(6):677–681

  28. Sanchez JS et al (2018) Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim Acta 279:44–56

    Article  CAS  Google Scholar 

  29. Abdollahifar M et al (2018) High-performance carbon-coated ZnMn2O4 nanocrystallite supercapacitors with tailored microstructures enabled by a novel solution combustion method. J Power Sources 378:90–97

    Article  CAS  Google Scholar 

  30. Xiong P et al (2014) Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J Power Sources 266:384–392

  31. Sahoo S, Zhang S, Shim J-JJEA (2016) Porous ternary high performance supercapacitor electrode based on reduced graphene oxide, NiMn2O4, and polyaniline. Electrochim Acta 216:386–396

  32. Yuan C et al (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    Article  CAS  Google Scholar 

  33. Chen D et al (2015) Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A 3(19):10158–10173

    Article  CAS  Google Scholar 

  34. Li Y et al (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78

  35. Yedluri AK, Kim H-JJRa (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Advances 9(2):1115–1122

  36. Chen X et al (2020) Supercapacitor performance of porous nickel cobaltite nanosheets. Sci Rep 10(1):18956–18969

  37. Mondal S, Rana U, Malik SJTJoPCC (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121(14):7573–7583

  38. Tabrizi AG et al (2018) Growth of polyaniline on rGO-Co3S4 nanocomposite for high-performance supercapacitor energy storage. Int J Hydrog Energy 43(27):12200–12210

  39. Pan C, Gu H, Dong LJJoPS (2016) Synthesis and electrochemical performance of polyaniline@ MnO2/graphene ternary composites for electrochemical supercapacitors. J Power Sources 303:175–181

  40. Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  41. Wang N et al (2016) Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. J Solid State Electrochem 20(5):1429–1434

    Article  CAS  Google Scholar 

  42. Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22(8):1471–1483

    Article  CAS  Google Scholar 

  43. Gao Z et al (2014) Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim Acta 133:325–334

    Article  CAS  Google Scholar 

  44. Dong Y et al (2014) Sensitive detection of Pb (II) at gold nanoparticle/polyaniline/graphene modified electrode using differential pulse anodic stripping voltammetry. Anal Methods 6(23):9367–9374

    Article  CAS  Google Scholar 

  45. Kumar NA et al (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6(2):1715–1723

    Article  CAS  Google Scholar 

  46. Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586

    Article  CAS  Google Scholar 

  47. Gholami Laelabadi K, Moradian R, Manouchehri IJAAEM (2020) One-step fabrication of flexible, cost/time effective, and high energy storage reduced graphene oxide@ PANI supercapacitor. ACS Appl Energy Mater 3(6):5301–5312

  48. Gholami Laelabadi K, Moradian R, Manouchehri IJAAEM (2021) Facile method of fabricating interdigitated and sandwich electrodes for high-performance and flexible reduced graphene oxide@ polyaniline nanocomposite supercapacitors. ACS Appl Energy Mater 4(7):6697–6710

  49. Das M, Sarker AKJAJoC (2020) Preparation of polyaniline/graphene oxide thin films microelectrodes through electrochemical reduction at different potential range for high-performance supercapacitors. Asian J Chem 32(12):3047–3056

  50. Goswami S et al (2019) Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: sustainable materials for renewable energy applications. Electrochim Acta 316:202–218

  51. Bu F et al (2020) Recent developments of advanced micro-supercapacitors: design, fabrication and applications. npj Flexible Electronics 4(1):1–16

  52. Zhang L et al (2017) Mesoporous NiCo2O4 micro/nanospheres with hierarchical structures for supercapacitors and methanol electro–oxidation. ChemElectroChem 4(2):441–449

    Article  CAS  Google Scholar 

  53. Ko T-H et al (2017) A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications. J Alloy Compd 696:193–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Norouzi, P. & Yari, F. Fabrication of ternary supercapacitor electrode using nickel cobaltite nanosheets to polyaniline/graphene oxide. Ionics 28, 3001–3011 (2022). https://doi.org/10.1007/s11581-022-04495-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04495-6

Keywords

Navigation