Skip to main content
Log in

Preparation of self-assembled porous flower-like nanostructured magnetite (Fe3O4) electrode material for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured electrode materials for supercapacitors have attracted research interest due to their high power density and long cycle life. Herein, porous flower-like magnetite (Fe3O4) nanostructures have been synthesized using ethylene glycol mediated iron alkoxide as a precursor material. The magnetite nanostructures are prepared by heating an iron alkoxide at 450 °C for 3 h under N2 atmosphere. The prepared porous nanostructure is polycrystalline with a high surface area of 186 m2 g−1 and existence of pores with a pore volume 6.6 nm. The electrochemical capacitance performance of Fe3O4 nanostructures has been evaluated. The high discharge capacitance is 183 F g−1 at 1 A g-1 with high capacitance retention of about 65% upon charge–discharge cycling after 5000 cycles have been observed. The high discharge rate and cyclic stability are attributed to the porous nature of the Fe3O4 nanostructures. As Fe3O4 is inexpensive, relatively non-toxic, and environmental friendly nature has potential application for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  2. Zhang YX, Huo W, Li K, Sun Q, Cao T (2020) Chapter 9 In Advanced nanomaterials for electrochemical-based energy conversion and storage. Ran F, Chen S, Eds; Elsevier:; pp. 295–324

  3. Shadpour M, Amir A, Manzar M, Ali AE, Mehdi MA (2017) Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high performance supercapacitor electrode. J Mater Sci 52:9683–9695

    Article  Google Scholar 

  4. Dennis S, John CB, Joseph SE, Cheng-Jun S, Yang SH, Mircea D (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224

    Article  Google Scholar 

  5. Faxing W, Xiongwei W, Xinhai Y, Li Z, Yi Z, Lijun F, Yusong Z, Qingming Z, Yuping W, Wei H (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  Google Scholar 

  6. Nadia OL, Iraklii IE, Bradley Easton E, Olena VZ (2021) Systematic design of electrochromic energy storage devices based on metal-organic monolayers. ACS Appl Energy Mater 4:3469–3479

    Google Scholar 

  7. Shanshan Q, Qian Z, Xixi Y, Mengmeng L, Qijun S, Zhong LW (2018) Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv Energy Mater 8:1800069

    Article  Google Scholar 

  8. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  9. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  10. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777

    Article  CAS  Google Scholar 

  11. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567

    Article  CAS  Google Scholar 

  12. Qiao Y, Sun Q, Cui H, Wang D, Yang F, and Wang X (2015) Synthesis of micro/nano-structured Mn3O4 for supercapacitor electrode with excellent rate performance RSC Adv. 5:31942–31946

  13. Pang SC, Khoh WH, Chin SF (2010) Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. J Mater Sci 45:5598–5604

    Article  CAS  Google Scholar 

  14. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem Lett 2:A60–A62

    Article  CAS  Google Scholar 

  15. Shivakumara S, Rao PT, Munichandraiah N (2014) Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 18:1057–1066

    Article  CAS  Google Scholar 

  16. Pratigya S, Manickam MS, Teeraphat W, Damian L, Holger E, Rajeev A (2020) Zn metal atom doping on the surface plane of 1D NiMoO4 nanorods with improved redox chemistry. ACS Applied Mater Interfaces 12:44815

    Article  Google Scholar 

  17. Avijit B, Prasanna KP, Achyuta NA, Bankim CT, Feraih A, Zhong TJ, Manickam MS (2020) Tuning the morphology and redox behaviour by varying concentration of Fe in a CoNiFe Ternary Oxide Heterostructure for Hybrid Devices New J. Chemistry 44:9921

    Google Scholar 

  18. Ma FX, Sun XY, Zhang BY, Sun SC, Zhou C, Zhen L, Xu CY (2018) Topochemical synthesis of ultrathin nanosheet-constructed Fe3O4 hierarchical structures as high-performance anode for Li-ion batteries. J Mater Sci Mater. Electron 29:7805–7810

    CAS  Google Scholar 

  19. Nithya VD, Sabari AN (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778

    Article  CAS  Google Scholar 

  20. Suhanto RN, Harimurti S, Septiani NLW, Utari L, Anshori I, Wasisto HS, Suzuki H, Suyatman, Yuliarto, B (2020) Sonochemical synthesis of magnetic Fe3O4/graphene nanocomposites for label-free electrochemical biosensors, J. Mater. Sci.: Mater Electron. 31:15381–15393

  21. Vinosel VM, Anand S, Janifer MA, Pauline S, Dhanavel S, Praveena P, Stephen A (2019) Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye. J Mater Sci: Mater Electron 30:9663–9677

    CAS  Google Scholar 

  22. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  CAS  Google Scholar 

  23. Rao PT, Shivakumara S, Minakshi M, Munichandraiah N (2015) Porous flower-like α-Fe2O3 nanostructure: a high performance anode material for lithium-ion batteries. Electrochim Acta 167:330–339

    Article  Google Scholar 

  24. Rajeevgandhi C, Bharanidharan S, Savithiri S, Guganathan L, Sugumar P, Sathiyamurthy K, Mohan K (2020) Synthesis, characterizations and quantum chemical calculations of the spinel structure of Fe3O4 nanoparticles. J Mater Sci: Mater Electron 31:21419–21430

    CAS  Google Scholar 

  25. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799

    Article  CAS  Google Scholar 

  26. Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5

    Article  CAS  Google Scholar 

  27. Wang SY, Ho KC, Kuo SL, Wu NL (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153:A75–A80

    Article  CAS  Google Scholar 

  28. Zhao X, Johnston C, Crossley A, Grant PS (2010) Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J Mater Chem 20:7637–7644

    Article  CAS  Google Scholar 

  29. Larcher D, Sudant G, Patrice R, Tarascon JM (2003) Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal oxides particles. Chem Mater 15:3543–3551

    Article  CAS  Google Scholar 

  30. Liu B, Zeng HC (2005) Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1:566–571

    Article  CAS  Google Scholar 

  31. Brunauer S, Deming L, Deming W, Teller E (1940) On a Theory of the van der Waals Adsorption of Gases. J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  32. Liu J, Liu S, Zhuang S, Wang X, Tu F (2013) Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics 19:1255–1261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shivakumara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, N., Lakshmi, B. & Shivakumara, S. Preparation of self-assembled porous flower-like nanostructured magnetite (Fe3O4) electrode material for supercapacitor application. J Solid State Electrochem 26, 887–895 (2022). https://doi.org/10.1007/s10008-021-05097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05097-4

Keywords

Navigation