Skip to main content
Log in

Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-coated Fe3O4 and pure Fe3O4 nanorods are synthesized via hydrothermal reaction and subsequent sintering procedure. The as-prepared products characterized by X-ray diffraction and scanning electron microscopy analysis indicate that carbon coating does not affect the structure and morphology of Fe3O4. Transmission electron microscope shows that Fe3O4 nanorods are homogeneously coated by carbon layer with a thickness of approximately 2 nm. The electrochemical properties measured by cyclic voltammetry, galvanostatic charge–discharge cycling and electrochemical impedance spectroscopy tests show that carbon-coated Fe3O4 (Fe3O4/C) nanorods present improved electrochemical performance due to the carbon layer. A specific capacitance of 275.9 F g−1 is achieved at a current density of 0.5 A g−1 in 1 M Na2SO3 aqueous solution for the Fe3O4/C nanorods in comparison to that of 208.6 F g−1 for pure Fe3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrog Energy 34:4889

    Article  CAS  Google Scholar 

  2. Winter M, Brodd RJ (2004) Chem Rev 35:4245

    Article  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797

    Article  CAS  Google Scholar 

  5. Choi BG, Hong J, Hong WH, Hammond PT, Park HS (2011) ACS Nano 5:7205

    Article  CAS  Google Scholar 

  6. Kim YS, Kumar K, Fisher FT, Yang EH (2012) Nanotechnol 23:015301

    Article  Google Scholar 

  7. Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, Xia Y, Zheng G, Zhao D (2011) J Amer Chem Soc 133:15148

    Article  CAS  Google Scholar 

  8. Xu MW, Bao SJ, Li HL (2006) J Solid State Electrochem 11:372

    Article  Google Scholar 

  9. Jiang H, Zhao T, Yan C, Ma J, Li C (2010) Nanoscale 2:2195

    Article  CAS  Google Scholar 

  10. Wang H, Zhang L, Tan X, Holt CMB, Zahiri B, Olsen BC, Mitlin D (2011) J Phys Chem C 115:17599

    Article  CAS  Google Scholar 

  11. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) ACS Appl Mater Interfaces 2:821

    Article  CAS  Google Scholar 

  12. Malinauskas A, Malinauskiene J, Ramanavičius A (2005) Nanotechnol 16:R51

    Article  CAS  Google Scholar 

  13. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F (2006) J Power Sources 153:413

    Article  CAS  Google Scholar 

  14. Ke Y, Tsai D, Huang Y (2005) J Mater Chem 15:2122

    Article  CAS  Google Scholar 

  15. Zhao X, Johnston C, Crossley A, Grant PS (2010) J Mater Chem 20:7637

    Article  CAS  Google Scholar 

  16. Du X, Wang C, Chen M, Jiao Y, Wang J (2009) J Phys Chem C 113:2643

    Article  CAS  Google Scholar 

  17. Kim YH, Park SJ (2011) Curr Appl Phys 11:462

    Article  Google Scholar 

  18. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) J Power Sources 113:173

    Article  CAS  Google Scholar 

  19. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Nanoscale 3:5034

    Article  CAS  Google Scholar 

  20. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) Angew Chem Int Ed 47:7461

    Article  CAS  Google Scholar 

  21. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Adv Funct Mater 18:3941

    Article  CAS  Google Scholar 

  22. Yuan SM, Li JX, Yang LT, Su LW, Liu L, Zhou Z (2011) ACS Appl Mater Interfaces 3:705

    Article  CAS  Google Scholar 

  23. Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) J Phys Chem C 115:13603

    Article  CAS  Google Scholar 

  24. Liu H, Wang G, Wang J, Wexler D (2008) Electrochem Commun 10:1879

    Article  CAS  Google Scholar 

  25. Zhu T, Chen JS, Lou XW (2011) J Phys Chem C 115:9814

    Article  CAS  Google Scholar 

  26. Hao Q, Lei D, Yin X, Zhang M, Liu S, Li Q, Chen L, Wang T (2010) J Solid State Electrochem 15:2563

    Article  Google Scholar 

  27. Chen J, Huang K, Liu S (2009) Electrochim Acta 55:1

    Article  CAS  Google Scholar 

  28. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) J Mater Chem 21:671

    Article  CAS  Google Scholar 

  29. Kuratani K, Tatsumi K, Kuriyama N (2007) Cryst Growth Des 7:1375

    Article  CAS  Google Scholar 

  30. Guo YG, Hu YS, Sigle W, Maier J (2007) Adv Mater 19:2087

    Article  CAS  Google Scholar 

  31. Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) J Mater Chem 21:3422

    Article  CAS  Google Scholar 

  32. Wang YG, Xia YY (2006) J Electrochem Soc 153:A450

    Article  CAS  Google Scholar 

  33. Pang SC, Khoh WH, Chin SF (2010) J Mater Sci 45:5598

    Article  CAS  Google Scholar 

  34. Li H, Liu S, Huang C, Zhou Z, Li Y, Fang D (2011) Electrochim Acta 58:89

    Article  CAS  Google Scholar 

  35. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Carbon 48:3825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would express their sincere thanks to the Nature Science Foundation of China (No. 51072234) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Liu, S., Zhuang, S. et al. Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics 19, 1255–1261 (2013). https://doi.org/10.1007/s11581-013-0857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0857-6

Keywords

Navigation