Skip to main content

Advertisement

Log in

Determination of Gibbs energy of formation of LiThF5, LiTh2F9, and LiTh4F17 in Li-Th-F system by using solid electrolyte galvanic cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The LiF-ThF4 system has been considered as reference fuel solvent for molten salt reactor. The high-temperature interaction of LiF-ThF4 leads to formation of a number of complex fluoride compounds. The study is focused on determination of experimental thermodynamic properties of the compounds in this system. The Gibbs energy of formation of LiThF5 (s), LiTh2F9 (s), and LiTh4F17 (s) has been measured by solid electrolyte galvanic cell method and the Gibbs energy of formation of these compounds as a function of temperature were expressed as

$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiThF}}_5,\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-2738.7\pm 0.6\right)+\left(0.4050\kern0.5em \pm 0.0007\right)\cdotp \left(T/\mathrm{K}\right) $$
$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiTh}}_2{\mathrm{F}}_9,\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-4885.1\pm 0.8\right)+\left(0.7430\pm 0.0009\right)\cdotp \left(T/\mathrm{K}\right) $$
$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiTh}}_4{\mathrm{F}}_{17},\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-9126.5\pm 2.6\right)+\left(1.3801\pm 0.0034\right)\cdotp \left(T/\mathrm{K}\right) $$

The heat capacities of these compounds were also measured using differential scanning calorimeter. Using the experimental thermodynamic data, the thermodynamic tables of LiThF5 (s), LiTh2F9 (s), and LiTh4F17 (s) were constructed and the ternary phase diagram of Li-Th-F system was calculated to study the stability domain and coexisting phases of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Blumberg R (1967) Maintenance Development or Molten-Salt Breeder Reactors ORNL-TM-1859. Oak Ridge National Laboratory

  2. Perry AM, Bauman HF (1970) Nucl Appl Techn 8:208–215

    Article  CAS  Google Scholar 

  3. Briggs RB (1963) Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1963, ORNL-3529. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  4. Vijayan PK, Basak A, Dulera IV, Vaze KK, Basu S, Sinha RK (2015) Pramana. J Phys 85(3):539–554

    CAS  Google Scholar 

  5. Sinha RK (2011) Energy Procedia 7:34–50

    Article  Google Scholar 

  6. Kasten PR (1967) “Safety program for molten-salt breeder reactors,” ORNL-TM-1858. Oak Ridge National Laboratory

  7. McCoy E, Weir JR (1967) Materials development for molten salt breeder reactors, ORNL-TM1854. Oak Ridge National Laboratory

  8. Macpherson HG (1969) “Molten-Salt Reactors,” Proceedings of the International Conference on the Constructive Uses of Atomic Energy, Washington, DC, November 1968, American Nuclear Society

  9. Delpech S, Merle-Lucotte E, Heuer D, Allibert M, Ghetta V, Le-Brun C, Doligez X, Picard G (2009) J Fluor Chem 130(1):11–18

    Article  CAS  Google Scholar 

  10. Beneš O, Beilmann M, Konings RJM (2010) J Nucl Mater 405(2):186–198

    Article  Google Scholar 

  11. Capelli E, Beneš O, Beilmann M, Konings RJM (2013) J Chem Thermodyn 58:110–116

    Article  CAS  Google Scholar 

  12. Capelli E, Beneš O, Konings RJM (2015) J Nucl Mater 462:43–53

    Article  CAS  Google Scholar 

  13. Bird JM, Bryant AW, Pratt JN (1975) J Chem Thermodyn 7(6):577–586

    Article  CAS  Google Scholar 

  14. Bugden WG, Pratt JN (1969) J Chem Thermodyn 1(4):353–361

    Article  CAS  Google Scholar 

  15. Pratt JN (1990) Metall Trans A 21(4):1223–1250

    Article  Google Scholar 

  16. Wagner C (1968) J Electrochem Soc 115(9):933–935

    Article  CAS  Google Scholar 

  17. Wagner C (1953) J Chem Phys 21(10):1819–1827

    Article  CAS  Google Scholar 

  18. Jacob KT, Iyengar GNK (1999) Metall Mater Trans B 30B:865–870

    Article  CAS  Google Scholar 

  19. Ramasesha SK (1989) J Appl Electrochem 19(3):394–400

    Article  CAS  Google Scholar 

  20. Jacob KT, Rajitha G (2011) J Chem Thermodyn 43(1):51–57

    Article  CAS  Google Scholar 

  21. Jacob KT, Waseda Y (1994) Thermochim Acta 239:233–241

    Article  CAS  Google Scholar 

  22. Fitzner K (1983) Zeitschrift fuer Metallkunde 74(11):755–757

    CAS  Google Scholar 

  23. Hohne GWH, Hemminger WF, Flammershein HJ (2003) Differential scanning calorimetry, second edn. Springer, Berlin

    Book  Google Scholar 

  24. Mukherjee S, Dash S (2019) J Solid State Electrochem 23(1):307–314

    Article  CAS  Google Scholar 

  25. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer - Verlag, New York

    Google Scholar 

  26. Mukherjee S, Dash S (2017) J Solid State Electrochem 21(12):3589–3597

    Article  CAS  Google Scholar 

  27. Mukherjee S, Dash S (2018) J Fluor Chem 212:17–25

    Article  CAS  Google Scholar 

  28. (1997) PDF-2 Database, Powder Diffraction File, International Centre for Diffraction Data, Pennsylvania

  29. Kopp H (1865) Philos Trans R Soc Lond 155:71

    Article  Google Scholar 

  30. Leitner J, Voňkab P, Sedmidubský D, Svobodae P (2010) Thermochim Acta 497(1-2):7–13

    Article  CAS  Google Scholar 

  31. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics, the Calphad Method. Cambridge University Press

  32. Kaufman L, Bernstein H (1970) Computer Calculation of Phase Diagrams. Academic Press, New York

    Google Scholar 

  33. Pelton AD, Chartrand P, Eriksson G (2001) Metall Mater Trans A 32A(6):1409–1416

    Article  Google Scholar 

  34. Mukherjee S, Dash S, Mukerjee SK, Ramakumar KL (2015) J Nucl Mater 465:604–614

    Article  CAS  Google Scholar 

  35. FactSage Version 6.3, “The Integrated Thermodynamic Data Bank System”. GTT Technologies, GmbH, Germany, pp 1976–2006

Download references

Acknowledgments

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Smt. Geeta Selke for X-ray diffraction analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Mukherjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Dash, S. Determination of Gibbs energy of formation of LiThF5, LiTh2F9, and LiTh4F17 in Li-Th-F system by using solid electrolyte galvanic cell. J Solid State Electrochem 23, 3043–3056 (2019). https://doi.org/10.1007/s10008-019-04404-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04404-4

Keywords

Navigation