Skip to main content
Log in

Determination of the thermodynamic properties of the Li2CaThF8 in Li-Ca-Th-F system by the solid-state electrochemical cell method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present paper, we have reported the standard molar Gibbs energy of formation for Li2CaThF8(s) measured by solid electrolyte galvanic cell technique with CaF2 as solid electrolyte. The heat capacity, Cp, of the compound has been measured using the differential scanning calorimetric technique. Based on the experimentally obtained thermodynamic parameters, thermodynamic functions for Li2CaThF8(s) have been generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasten PR (1967) Safety program for molten-salt breeder reactors, ORNL-TM-1858. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  2. McCoy E, Weir JR (1967) Materials development for molten salt breeder reactors, ORNL-TM1854. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  3. Macpherson HG (1969) Molten-salt reactors, Proceedings of the International Conference on the Constructive Uses of Atomic Energy. American Nuclear Society, Washington, DC

    Google Scholar 

  4. Delpech S, Merle-Lucotte E, Heuer D, Allibert M, Ghetta V, Le-Brun C, Doligez X, Picard G (2009) Reactor physic and reprocessing scheme for innovative molten salt reactor system. J Fluor Chem 130:11–18

  5. Nuttin DH, Billebaud A, Brissot R, Le Brun C, Liatard E, Loiseaux JM, Mathieu L, Meplan O, Merle-Lucotte E, Nifenecker H, Perdu F, David S (2005) Potential of thorium Molten Salt Reactors : detailed calculations and concept evolution with a view to large scale energy production. Prog Nucl Energy 46:77–84

  6. Perry AM, Bauman HF (1970) Reactor Physics and Fuel-Cycle Analyses. Nucl Appl and Techn 8:208–215

  7. Mathieu L, Heuer D, Brissot R, Garzenne C, Le Brun C, Lecarpentier D, Liatard E, Loiseaux JM, Mèplan O, Merle-Lucotte E, Nuttin A, Walle E, Wilson J (2006) The thorium molten salt reactor: Moving on from the MSBR. Prog Nucl Energy 48:664–671

  8. Vedrine A, Baraduc L, Cousseins JL (1973) Sur une nouvelle famillede composes MIIMIVLi2F8 de structure apparentee a celle de la scheelite. Mater Res Bull 8(5):581–588

    Article  CAS  Google Scholar 

  9. Capelli E, Beneš O, Raison PE, Beilmann M, Künzel C, Konings RJM (2015) Thermodynamic Investigation of the CaF2-ThF4 and the LiF-CaF2-ThF4 Systems. J Chem Eng Data 60(11):3166–3174

    Article  CAS  Google Scholar 

  10. Saha A, Deb SB, Saxena MK (2016) Determination of trace impurities in advanced metallic nuclear fuels by inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS). J Anal At Spectrom 31(7):1480–1489

    Article  CAS  Google Scholar 

  11. Prasad R, Dash S, Parida SC, Singh Z, Venugopal V (2003) Thermodynamic studies on SrThO3(s). J Nucl Mater 312(1):1–8

    Article  CAS  Google Scholar 

  12. Li2CaThF8 crystal structure https://materials.springer.com/isp/crystallographic/docs/sd_1636328 sd_1636328 (Springer-Verlag GmbH, Heidelberg, © 2016)

  13. Kopp H (1865) Investigations of the specific heat of solid bodies. Phil Trans R Soc Lond 155:71

    Article  Google Scholar 

  14. Leitner J, Vonˇkab P, Sedmidubsky’ D, Svobodae P (2010) Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 497:7–13

    Article  CAS  Google Scholar 

  15. Beneš O, Konings RJM, Kuenzel C, Sierig M, Dockendorf A, Vlahovic L (2009) J Chem Thermodyn 41:8993

    Google Scholar 

  16. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer - Verlag, New York

    Google Scholar 

  17. Sumanta M, Smruti D, Mukerjee SK, Ramakumar KL (2015) Thermodynamic investigations of oxyfluoride of thorium and uranium. J Nucl Mater 465:604–614

    Article  CAS  Google Scholar 

  18. Chase MW Jr, Davies CA, Downey JR Jr, Fruip DJ, McDonald V, Syverud AN (1995) NIST standard reference database. J Phys Chem 13. https://doi.org/10.18434/T42S31

  19. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics, the Calphad method. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New York

    Google Scholar 

  21. Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall. Mater Trans A 32A(6):1409–1416

    Article  Google Scholar 

  22. Zachariasen WH (1949) Crystal chemical studies of the 5f‐series of elements. XII. New compounds representing known structure types. Acta Crystallogr 2:388–390

  23. Keller C, Salzer M (1967) Tern~re fluoride des typs MertMetVF~MIT LaFa-Struktur. J Inorg Nucl Chem 29:2925–2934

  24. Harris LA, White GD (1959) X-Ray analyses of the solid phases in the system LiF-ThF. J Phys Chem 63:1974–1975

Download references

Acknowledgements

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Shri Buddhadev Kanrar and Shri. Muhammed Shafeeq for performing the X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Dash, S. Determination of the thermodynamic properties of the Li2CaThF8 in Li-Ca-Th-F system by the solid-state electrochemical cell method. J Solid State Electrochem 23, 307–314 (2019). https://doi.org/10.1007/s10008-018-4125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4125-6

Keywords

Navigation