Skip to main content
Log in

LiF-NiF2 system: high temperature stability study of Li2NiF4(s) and interaction of fuel salts of molten salt reactor with structural material components

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High temperature interaction of LiF-NiF2 system is characterized with the ternary compound, Li2NiF4(s). The compound has been synthesized by solid state route. Li2NiF4(s) has been characterized with XRD technique and its micro-homogeneity and surface morphology have been tested with EDS and SEM technique, respectively. In order to study the thermodynamic stability, the Gibbs energy of formation, Δfm(T), of Li2NiF4(s) has been measured with solid electrolyte galvanic cell technique and its measured Δfm(T) can be expressed as Δfm(T) [Li2NiF4(s)] / k.J mol−1 = (-1902.2 ± 1.1) + (0.3491 ± 0.0016) × (T/K). Using the experimental thermodynamic data, ternary phase diagram and fluorine potential diagram of Li-Ni-F2 system have been calculated in order to study the stability domain and coexisting phases of Li2NiF4(s) at reactor operating temperature. The stability of Li2NiF4(s) has also been investigated in the presence of oxygen impurity by calculating chemical potential diagram of Li-Ni-F-O system and ternary phase diagram of LiF-NiF2-O2 system at the same temperature. In the study, interaction of major structural components, Ni, Cr, and Fe, with fuel salt components (ThF4 and UF4) of MSR has also been investigated at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. High pure (moisture and oxygen free) argon.

References

  1. US DOE Nuclear Energy Research Advisory Committee (2002) A technology roadmap for Generation IV Nuclear Energy Systems. (PDF). GIF-002–00. Archived from the original (PDF) on 29 November 2007

  2. India's three-stage nuclear power programme. https://en.wikipedia.org/wiki/India%27s_three-stage_nuclear_power_programme

  3. McCoy HE (1978) Status of materials development for molten salt reactors. ORNL/TM-5920

  4. Keiser JR (1977) Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts. ORNL/TM-5783

  5. A Technology Roadmap for Generation IV Nuclear Energy Systems (2002) The U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum 39

  6. Koger JW (1972) Evaluation of Hastelloy N alloys after nine years exposure to both a molten fluoride salt and air at temperatures from 700 to 560 °C. ORNL-TM-4189

  7. Keiser JR (1977) Status of Tellurium-Hastelloy N studies in molten fluoride salts. ORNL/TM-6002

  8. McCoy HE (1969) The INOR-8 Story. Review 3:35

  9. Capelli E, Benes O, Raison PE, Beilmann M, Kunzel C, Konings RJM (2015) J Chem Eng Data 60:3166

    Article  CAS  Google Scholar 

  10. Rudorff VW, Kandler J, Babel D (1962) Z Anorg Allg Chem 317:261

    Article  Google Scholar 

  11. Fourquet JL, Duroy H, Leblanc M, Ferey G (1989) J Solid State Chem 78:184

    Article  CAS  Google Scholar 

  12. Kohl J, Nakhal S, Ferro N, Bottke P, Wilkening M, Bredow T, Heitjans P, Lerch M (2013) Z anorg allg Chem 639:326

    Article  CAS  Google Scholar 

  13. Ocadiz-Flores JA, Capelli E, Raison PE, Konings RJM, Smith AL (2018) J Chem Thermodynamics 121:17

    Article  CAS  Google Scholar 

  14. Zhang M (2017) J Alloys and Compounds 723:139

    Article  CAS  Google Scholar 

  15. Agarwal R, Sharma MK (2017) Electrochim Acta 224:496

    Article  CAS  Google Scholar 

  16. Mukherjee S, Dash S (2017) J Solid State Electrochem 21:3589

    Article  CAS  Google Scholar 

  17. Mukherjee S, Dash S (2018) J Fluor Chemistry 212:17–25

    Article  CAS  Google Scholar 

  18. Mukherjee S, Dawar R, Phapale S, Dash S, Mishra R (2019) J Thermal Analysis Calorimetry 137:667

    Article  CAS  Google Scholar 

  19. Mukherjee S, Dash S, Mukerjee SK, Ramakumar KL (2015) J Nucl Mater 465:604

    Article  CAS  Google Scholar 

  20. Mukherjee S (2018) J Solid State Electrochem 22:1745

    Article  CAS  Google Scholar 

  21. Saunders N, Miodownik AP (1998) CALPHAD: A Comprehensive Guide, Pergamon Materials Series, Vol.1, Pergamon

  22. Lukas HL, Fries SG, Sundman B (2007) Computational Thermodynamics, the CALPHAD Method, Cambridge University Press

  23. Kaufman L, Bernstein H (1970) Computer Calculation of Phase Diagrams. Academic Press, New York, NY

    Google Scholar 

  24. Mukherjee S, Dash S (2017) J Radioanal and Nucl Chem 313(3):497

    Article  CAS  Google Scholar 

  25. Barin I, Knacke O (1973) Thermochemical Properties of Inorganic Substances. Springer - Verlag, New York

    Google Scholar 

  26. FactSage (1976–2006) Version 6.3, The Integrated Thermodynamic Data Bank System, GTT Technologies GmbH, Germany

  27. Pelton AD, Chartrand P, Eriksson G (2001) Metall Mater Trans A 32A(6):1409

    Article  Google Scholar 

  28. PDF-2 Database (1997) Powder Diffraction File, International Centre for Diffraction Data, Pennsylvania

  29. Rodriguez-Carvajal J (2000) Fullprof 2000 Version 1.6, Laboratoire Leon Brillouin, Gifsur Yvette, France

  30. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272

    Article  CAS  Google Scholar 

  31. Chase Jr MW, Davies CA, Downey Jr JR, Fruip DJ, McDonald V, Syverud AN (1995) J. Phys Chem Ref Data, Monograph 9, JANAF Thermochemical Tables (4th Ed.)

  32. Zainul Bahri CNAC, Al-Areqi WM, Mohd Ruf MIF (2017) AIP Conference Proceedings 1799:040008

  33. Anderson M et al (2016) Heat Transfer Salts for Nuclear Reactor Systems – Chemistry Control, Corrosion Mitigation, and Modeling. CFP-10-100. University of Wisconsin, Madison

    Google Scholar 

  34. Liua Y, Songa Y, Ai H, Shen M, Liu H, Zhao S, Liu Y, Fei Z, Fua X, Cheng J (2020) Corrosion Sci 169:08636

  35. Zheng G, He L, Carpenter D, Sridharan K (2016) J Nucl Mater 482:147

    Article  CAS  Google Scholar 

  36. Guo S, Zhang J, Wu W, Zhou W (2018) Prog in Materials Science 97:448

    Article  CAS  Google Scholar 

  37. Straka M, Korenko M, Lisy F (2010) J Radioanal and Nucl Chem 284:245

    Article  CAS  Google Scholar 

  38. Keiser J, DeVan J, Manning D (1977) The Corrosion Resistance of Type 316 Stainless Steel to Li2BeF4. ORNL/TM-5782

  39. Zheng G, Sridharan K (2018) Jom 70:1535–1541

    Article  CAS  Google Scholar 

  40. Weitzel, David B (2009) An Experimental and Numerical Investigation of Flow Accelerated FLiBe Corrosion. https://digitalrepository.unm.edu/ne_etds/82

Download references

Acknowledgements

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Smt. Geeta R. Patkare and Shri. Muhammed Shafeeq for XRD analysis of the samples and Shri Rahul Agarwal for SEM and EDS study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Dash, S. LiF-NiF2 system: high temperature stability study of Li2NiF4(s) and interaction of fuel salts of molten salt reactor with structural material components. J Solid State Electrochem 26, 1037–1050 (2022). https://doi.org/10.1007/s10008-022-05134-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05134-w

Keywords

Navigation