Skip to main content
Log in

Thermodynamics and phase equilibria involving the spinel solid solution Fe X Mg1−X Cr2O4

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Activities of FeCr2O4 in the spinel solid solutions Fe X Mg1−X Cr2O4 (0<X<1) in equilibrium with pure iron and Cr2O3 have been measured in the temperature range 1050 to 1350 K by employing a bielectrolyte solid-state galvanic cell of the type Pt, Fe + Fe X Mg1−X Cr2O4 + Cr2O3//(Y2O3) ThO2/(CaO) ZrO2//Fe + FeCr2O4 + Cr2O3, Pt Activities of both the components exhibit small negative deviation from the ideal behavior, characterized by the regular solution parameter Ω s =−2260 (±200) J/mol. The lattice parameter of the spinel solid solutions quenched from 1200 K was found to obey Vegard’s law. The phase relations in the FeO-MgO-Cr2O3 system have been deduced from the results obtained in this study together with other relevant thermodynamic data from the literature. The tie-lines between the solid solutions with rock salt and spinel structures represent the influence of intercrystalline ion exchange. The tie-lines are skewed toward the FeCr2O4 corner, primarily because of the higher stability of FeCr2O4 compared to MgCr2O4, with respect to their component binary oxides. The oxygen partial pressure corresponding to the two three-phase regions, Fe + Fe X Mg1−X Cr2O4 + Cr2O3 and Fe + Fe Y Mg1−Y O + Fe X Mg1−X Cr2O4, have been evaluated as a function of composition at 1200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takaoka, Y. Kikuchi, and Y. Kawai: Tetsu-to-Hagane, 1990, vol. 76, pp. 1839–46.

    CAS  Google Scholar 

  2. S. Takeuchi, H. Nakamura, T. Sakuraya, T. Fujii, and T. Nozaki: Tetsu-to-Hagane, 1990, vol. 76, pp. 1847–54.

    CAS  Google Scholar 

  3. H. Katayama, M. Kuwabara, H. Hirata, J. Yagi, T. Saitou, and M. Fujita: Tetsu-to-Hagane, 1990, vol. 76, pp. 1855–62.

    CAS  Google Scholar 

  4. K. Taoka, C. Tada, S. Yamada, H. Nomura, M. Ohnishi, and H. Bada: Tetsu-to-Hagane, 1990, vol. 76, pp. 1863–70.

    CAS  Google Scholar 

  5. F.G. Boericke and W.M. Bangert: U.S. Bureau of Mines Report No. 3813, 1945, United States Bureau of Mines, Washington, DC, pp. 1–19.

  6. H.M. Chen and J. Chipmann: Trans. Am. Soc. Met., 1946, vol. 38, pp. 70–113.

    Google Scholar 

  7. F.D. Richardson, J.H.E. Jeffes, and G. Withers: J. Iron Steel Inst., 1950, vol. 166, pp. 213–34.

    CAS  Google Scholar 

  8. W. Kunnmann, D.B. Rogers, and A. Wold: J. Phys. Chem. Solids, 1963, vol. 24, pp. 1535–38.

    Article  CAS  Google Scholar 

  9. T. Katsura and A. Muan: Trans. TMS-AIME, 1964, vol. 230, pp. 77–84.

    CAS  Google Scholar 

  10. J.D. Tretjakov and H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1965, vol. 69, pp. 396–402.

    Google Scholar 

  11. K.T. Jacob and C.B. Alcock: Metall. Trans. B, 1975, vol. 6B, pp. 215–21.

    Article  CAS  Google Scholar 

  12. M. Hino, K. Higuchi, T. Nagasaka, and S. Ban-Ya: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 739–45.

    CAS  Google Scholar 

  13. K.T. Jacob: J. Electrochem. Soc., 1977, vol. 124, pp. 1827–31.

    Article  CAS  Google Scholar 

  14. A. Petric and K.T. Jacob: Solid State Ionics, 1982, vol. 6, pp. 47–56.

    Article  CAS  Google Scholar 

  15. W.C. Hahn, Jr. and A. Muan: Trans. TMS-AIME, 1962, vol. 224, pp. 416–20.

    CAS  Google Scholar 

  16. M.P. Morozova and G.P. Karlovskaya: Z. Fiz. Khim., 1960, vol. 34, pp. 117–21.

    Google Scholar 

  17. L.G. Schmahl, B. Frisch, and G. Stock: Arch. Eisenhuttenwes., 1961, vol. 32, pp. 413–20.

    Google Scholar 

  18. A.V. Shashkina and Y.I. Gerasimov: Z. Fiz. Khim., 1953, vol. 27, pp. 399–410.

    CAS  Google Scholar 

  19. B.C.H. Steele: in Electromotive Force Measurements in High-Temperature Systems, C.B. Alcock, ed., The Institution of Mining and Metallurgy, London, 1968, pp. 3–25.

    Google Scholar 

  20. K.T. Jacob and C.B. Alcock: J. Solid State Chem., 1977, vol. 20, pp. 79–88.

    Article  CAS  Google Scholar 

  21. A. Petric and K.T. Jacob: J. Am. Ceram. Soc., 1982, vol. 65, pp. 117–23.

    Article  CAS  Google Scholar 

  22. A. Petric, K.T. Jacob, and C.B. Alcock: J. Am. Ceram. Soc., 1981, vol. 64, pp. 632–39.

    Article  CAS  Google Scholar 

  23. K.T. Jacob, K. Fitzner, and K.B. Alcock: Metall. Trans. B, 1977, vol. 8B, pp. 451–60.

    CAS  Google Scholar 

  24. K.T. Jacob, G.N.K. Iyengar, and W.K. Kim: J. Am. Ceram. Soc., 1986, vol. 69, pp. 487–92.

    Article  CAS  Google Scholar 

  25. H.S.C. O’Neill and A. Navrotsky: Am. Mineral., 1984, vol. 69, pp. 733–53.

    CAS  Google Scholar 

  26. T. Mathews and K.T. Jacob: Solid State Commun., 1992, vol. 84, pp. 975–78.

    Article  CAS  Google Scholar 

  27. K.T. Jacob and R. Patil: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, K.T., Iyengar, G.N.K. Thermodynamics and phase equilibria involving the spinel solid solution Fe X Mg1−X Cr2O4 . Metall Mater Trans B 30, 865–871 (1999). https://doi.org/10.1007/s11663-999-0091-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0091-9

Keywords

Navigation