Skip to main content
Log in

Influence of manganese ions dissolved from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A systematic investigation is conducted to evaluate the influence of dissolved manganese ions from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. Worse capacity fading is found in Li4Ti5O12-based full cells with increasing manganese ion addition. The interfacial film covered on Li4Ti5O12 anode is affected by the manganese ion contamination during cycling, which becomes thicker but more non-uniform, and is composed by less ratio of compact components and more ratio of loose components compared with that free of contamination. Such flawed passivation film cannot restrain the further penetration of electrolyte and inhibit the contact between electrolyte and Li4Ti5O12 anodes efficiently, thus triggering more interfacial reactions and that should be the reason for the more severe capacity degradation. Accordingly, we suggest that in addition to optimizing the chemistry and microstructure of Li4Ti5O12 electrode, more attention should also be paid to minimizing the destructive effect imposed on the passivation film of Li4Ti5O12 electrode by the transition metal ion contaminations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng ZD, Xiao J (2015) Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources 286:330–345

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  3. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better…a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2(8):922–939

    Article  CAS  Google Scholar 

  4. Yu L, Wu HB, Lou XWD (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25(16):2296–2300

    Article  CAS  Google Scholar 

  5. Lu X, Zhao L, He X, Xiao R, Gu L, Hu YS, Li H, Wang Z, Duan X, Chen L (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater 24(24):3233–3238

    Article  CAS  Google Scholar 

  6. Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3(11):5750–5777

    Article  CAS  Google Scholar 

  7. Xu G, Han P, Dong S, Liu H, Cui G, Chen L (2017) Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coordin Chem Rev 343:139–184

    Article  CAS  Google Scholar 

  8. Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater. https://doi.org/10.1002/aenm.201601625

  9. Zhang SS, Xu K, Jow TR (2006) Study of the charging process of a LiCoO2-based Li-ion battery. J Power Sources 160(2):1349–1354

    Article  CAS  Google Scholar 

  10. Shu J (2008) Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0-5.0 V. Electrochem Solid-State Lett 11(12):A238–A240

    Article  CAS  Google Scholar 

  11. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Article  CAS  Google Scholar 

  12. Zhang S, Xu K, Jow T (2004) Optimization of the forming conditions of the solid-state interface in the Li-ion batteries. J Power Sources 130(1):281–285

    Article  CAS  Google Scholar 

  13. Zhang S, Xu K, Jow T (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51(8):1636–1640

    Article  CAS  Google Scholar 

  14. Wang Y, Zhao J, Qu J, Wei FF, Song WG, Guo YG, Xu B (2016) Investigation into the surface chemistry of Li4Ti5O12 nanoparticles for lithium ion batteries. ACS Appl Mat Interfaces 8(39):26008–26012

    Article  CAS  Google Scholar 

  15. He M, Castel E, Laumann A, Nuspl G, Novák P, Berg EJ (2015) In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures. J Electrochem Soc 162(6):A870–A876

    Article  CAS  Google Scholar 

  16. Belharouak I, Koenig GM, Tan T, Yumoto H, Ota N, Amine K (2012) Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells. J Electrochem Soc 159(8):A1165–A1170

    Article  CAS  Google Scholar 

  17. Bernhard R, Meini S, Gasteiger HA (2014) On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins. J Electrochem Soc 161(4):A497–A505

    Article  CAS  Google Scholar 

  18. Wu K, Yang J, Liu Y, Zhang Y, Wang C, Xu J, Ning F, Wang D (2013) Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J Power Sources 237:285–290

    Article  CAS  Google Scholar 

  19. Lv W, Gu J, Niu Y, Wen K, He W (2017) Gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J Electrochem Soc 164(9):A2213–A2224

    Article  CAS  Google Scholar 

  20. Han C, He YB, Liu M, Li B, Yang QH, Wong CP, Kang F (2017) A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J Mater Chem A 5(14):6368–6381

    Article  CAS  Google Scholar 

  21. Gieu JB, Courrèges C, El Ouatani L, Tessier C, Martinez H (2016) Temperature effects on Li4Ti5O12 electrode/electrolyte interfaces at the first cycle: a X-ray Photoelectron Spectroscopy and Scanning Auger Microscopy study. J Power Sources 318:291–301

    Article  CAS  Google Scholar 

  22. Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114(24):10999–11008

    Article  Google Scholar 

  23. Borgel V, Gershinsky G, Hu T, Theivanayagam MG, Aurbach D (2013) LiMn0.8Fe0.2PO4/ Li4Ti5O12, a possible Li-ion battery system for load-leveling application. J Electrochem Soc 160(4):A650–A657

    Article  CAS  Google Scholar 

  24. Jung J, Hah HJ, Jin Lee T, Lee JG, Lee JB, Kim J, Soon J, Ryu JH, Kim JJ, Oh SM Effect of pre-cycling rate on the passivating ability of surface films on Li4Ti5O12 electrodes. J Electrochem Sci Technol 8(1):15–24

  25. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143(7):2204–2211

    Article  CAS  Google Scholar 

  26. Hirayama M, Ido H, Kim K, Cho W, Tamura K, Ji M, Kanno R (2010) Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc 132(43):15268–15276

    Article  CAS  Google Scholar 

  27. Kim D, Park S, Chae OB, Ryu JH, Kim YU, Yin RZ, Oh SM (2012) Re-deposition of manganese species on spinel LiMn2O4 electrode after Mn dissolution. J Electrochem Soc 159(3):A193–A197

    Article  CAS  Google Scholar 

  28. Xiao X, Liu Z, Baggetto L, Veith GM, More KL, Unocic RR (2014) Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Phys Chem Chem Phys 16(22):10398–10402

    Article  CAS  Google Scholar 

  29. Zhan C, Lu J, Kropf AJ, Wu T, Jansen AN, Sun YK, Qiu X, Amine K (2013) Mn (II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat Commun 4:2437–2444

    Article  Google Scholar 

  30. Nordh T, Younesi R, Hahlin M, Duarte RF, Tengstedt C, Brandell D, Edström K (2016) Manganese in the SEI layer of Li4Ti5O12 studied by combined NEXAFS and HAXPES techniques. J Phys Chem C 120(6):3206–3213

    Article  CAS  Google Scholar 

  31. Tsunekawa H, Tanimoto S, Marubayashi R, Fujita M, Kifune K, Sano M (2002) Capacity fading of graphite electrodes due to the deposition of manganese ions on them in Li-ion batteries. J Electrochem Soc 149(10):A1326–A1331

    Article  CAS  Google Scholar 

  32. Delacourt C, Kwong A, Liu X, Qiao R, Yang WL, Lu P, Harris SJ, Srinivasan V (2013) Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries. J Electrochem Soc 160(8):A1099–A1107

    Article  CAS  Google Scholar 

  33. Vissers DR, Chen Z, Shao Y, Engelhard M, Das U, Redfern P, Curtiss LA, Pan B, Liu J, Amine K (2016) Role of manganese deposition on graphite in the capacity fading of lithium ion batteries. ACS Appl Mat Interfaces 8(22):14244–14251

    Article  CAS  Google Scholar 

  34. Michalak B, Sommer H, Mannes D, Kaestner A, Brezesinski T, Janek J (2015) Gas evolution in operating lithium-ion batteries studied in situ by neutron imaging. Sci Rep 5:15627–15635

    Article  CAS  Google Scholar 

  35. Chen H, Ma T, Zeng Y, Guo X, Qiu X (2017) Mechanism of capacity fading caused by Mn (II) deposition on anodes for spinel lithium manganese oxide cell. J Wuhan Univ Technol-Mater Sci Ed 32(1):1–10

    Article  CAS  Google Scholar 

  36. Komaba S, Kumagai N, Kataoka Y (2002) Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochim Acta 47(8):1229–1239

    Article  CAS  Google Scholar 

  37. Kumagai N, Komaba S, Kataoka Y, Koyanagi M (2000) Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes. Chem Lett 29(10):1154–1155

    Article  Google Scholar 

  38. Ziv B, Levy N, Borgel V, Li Z, Levi MD, Aurbach D, Pauric AD, Goward GR, Fuller TJ, Balogh MP (2014) Manganese sequestration and Li-ion batteries durability enhancement by polymeric 18-crown-6 ethers. J Electrochem Soc 161(9):A1213–A1217

    Article  CAS  Google Scholar 

  39. Banerjee A, Ziv B, Shilina Y, Luski S, Aurbach D, Halalay IC (2016) Improving stability of Li-ion batteries by means of transition metal ions trapping separators. J Electrochem Soc 163(6):A1083–A1094

    Article  CAS  Google Scholar 

  40. Banerjee A, Shilina Y, Ziv B, Ziegelbauer JM, Luski S, Aurbach D, Halalay IC (2017) On the oxidation state of manganese ions in Li-ion battery electrolyte solutions. J Am Chem Soc 139(5):1738–1741

    Article  CAS  Google Scholar 

  41. Shilina Y, Ziv B, Meir A, Banerjee A, Ruthstein S, Luski S, Aurbach D, Halalay IC (2016) Combined electron paramagnetic resonance and atomic absorption spectroscopy/inductively coupled plasma analysis as diagnostics for soluble manganese species from Mn-based positive electrode materials in Li-ion cells. Anal Chem 88(8):4440–4447

    Article  CAS  Google Scholar 

  42. Amatucci GG, Tarascon JM, Klein LC (1996) Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83(1):167–173

    Article  CAS  Google Scholar 

  43. Jorcin JB, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51(8):1473–1479

    Article  CAS  Google Scholar 

  44. Yang D, Zhao H, Wang J, Sun Y, Wu N, Tian W (2014) Effects of constant voltage at low potential on the formation of LiMnO2/graphite lithium ion battery. J Solid State Elect 18(7):1907–1914

    Article  CAS  Google Scholar 

  45. Dedryvère R, Gireaud L, Grugeon S, Laruelle S, Tarascon JM, Gonbeau D (2005) Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. J Phys Chem B 109(33):15868–15875

    Article  Google Scholar 

  46. Gieu JB, Courrèges C, El Ouatani L, Tessier C, Martinez H (2017) Influence of vinylene carbonate additive on the Li4Ti5O12 electrode/electrolyte interface for lithium-ion batteries. J Electrochem Soc 164(6):A1314–A1320

    Article  CAS  Google Scholar 

  47. Bodenes L, Dedryvere R, Martinez H, Fischer F, Tessier C, Peres JP (2012) Lithium-ion batteries working at 85 °C: aging phenomena and electrode/electrolyte interfaces studied by XPS. J Electrochem Soc 159(10):A1739–A1746

    Article  CAS  Google Scholar 

  48. Edström K, Herstedt M, Abraham DP (2006) A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sources 153(2):380–384

    Article  Google Scholar 

  49. Peled E, Menkin S (2017) SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719

    Article  CAS  Google Scholar 

Download references

Funding information

This work was financially supported by the National Basic Research Program of China (2013CB934003), National Natural Science Foundation of China (U1637202, 51634003, 21273019), and Program of Introducing Talents of Discipline to Universities (B14003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Qian, L., Sun, X. et al. Influence of manganese ions dissolved from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. J Solid State Electrochem 22, 479–485 (2018). https://doi.org/10.1007/s10008-017-3773-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3773-2

Keywords

Navigation