Skip to main content
Log in

Improved electrochemical performance of NaAlO2-coated LiCoO2 for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

NaAlO2-coated LiCoO2 materials have been synthesized as cathode materials for lithium-ion batteries. The NaAlO2 layer is coated on the LiCoO2 particles successfully. NaAlO2-coated LiCoO2 materials exhibit the improved cycling stability and rate capability at a high cutoff voltage of 4.5 V vs Li+/Li. The LiCoO2 sample coated by 2 wt.% NaAlO2 demonstrates the excellent cyclability with a capacity retention of 95.7 % after 50 cycles at 100 mA g−1. In the meantime, the sample shows superior rate performance, delivering a quite high capacity of over 135 mA h g−1 at a current density of 1600 mA g−1, corresponding to 73.4 % of the capacity at 20 mA g−1. NaAlO2-coating layer acts as a physical barrier that separates the LCO electrode and electrolyte, which will suppress the oxidation of solvents, dissolution of cobalt ions, and the evolution of oxygen at high cutoff voltage. Moreover, the NaAlO2 layer can provide two-dimensional ion diffusion channel for lithium ions, resulting in improvement of electrochemical performance for LiCoO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen ZH, Qin Y, Amine K, Sun YK (2010) J Mater Chem 20:7606–7612

    Article  CAS  Google Scholar 

  2. Jung YS, Lu P, Cavanagh AS, Ban C, Kim GH, Lee SH, George SM, Harris SJ, Dillon AC (2013) Adv Energy Mater 3:213–219

    Article  CAS  Google Scholar 

  3. Deng D (2015) Energy Science & Engineering 3:385–418

    Article  Google Scholar 

  4. Liu J, Zhang JG, Yang ZG, Lemmon JP, Imhoff C, Graff GL, Li LY, Hu JZ, Wang CM, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li XL, Shao YY, Schwenzer B (2013) Adv Funct Mater 23:929–946

    Article  CAS  Google Scholar 

  5. Hausbrand R, Cherkashinin G, Ehrenberg H, Groting M, Albe K, Hess C, Jaegermann W (2015) Mater Sci Eng B-Adv 192:3–25

    Article  CAS  Google Scholar 

  6. Shu J, Shui M, Huang F, Ren Y, Wang Q, Xu D, Hou L (2010) J Phys Chem C 114:3323–3328

    Article  CAS  Google Scholar 

  7. Wang ZG, Wang ZX, Peng WJ, Guo HJ, Li XH, Wang JX, Qi A (2014) Ionics 20:1525–1534

    Article  CAS  Google Scholar 

  8. Luo W, Li X, Dahn JR (2010) J Electrochem Soc 157:A782–A789

    Article  CAS  Google Scholar 

  9. Scott ID, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Nano Lett 11:414–418

    Article  CAS  Google Scholar 

  10. Dai X, Zhou A, Xu J, Yang B, Wang L, Li J (2015) J Power Sources 298:114–122

    Article  CAS  Google Scholar 

  11. Shim J, Lee S, Park S (2014) Chem Mater 26:2537–2543

    Article  CAS  Google Scholar 

  12. Cho J, Kim Y, Kim T, Park B (2001) Angew Chem Int Ed Engl 18:3367–3369

    Article  Google Scholar 

  13. Lee J, Kim B, Cho J, Kim Y, Park B (2004) J Electrochem Soc 151:A801–A805

    Article  CAS  Google Scholar 

  14. Lu J, Peng Q, Wang W, Nan C, Li L, Li Y (2013) J Am Chem Soc 135:1649–1652

    Article  CAS  Google Scholar 

  15. Sun Y, Yoon C, Myung S, Belharouak I, Amine K (2009) J Electrochem Soc 156:A1005–A1010

    Article  CAS  Google Scholar 

  16. Lee H, Park Y (2013) Solid State Ionics 230:86–91

    Article  CAS  Google Scholar 

  17. Park JS, Mane AU, Elam JW, Croy JR (2015) Chem Mater 27:1917–1920

    Article  CAS  Google Scholar 

  18. Reid AF, Ringwood AE (1968) Inorg Chem 7:443–445

    Article  CAS  Google Scholar 

  19. Botis SM, Pan Y (2009) Phys Chem Miner 37:119–127

    Article  Google Scholar 

  20. Tabuchi M, Masquelierb C, Takeuch T, Ado K, Matsubaraa I, Shirane T, Kannoc R, Tsutsuid S, Nasud S, Sakaebe H, Nakamuraa O (1996) Solid State Ionics 90:129–132

    Article  CAS  Google Scholar 

  21. Takamatsu D, Mori S, Orikasa Y, Nakatsutsumi T, Koyama Y, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2013) J Electrochem Soc 160:A3054–A3060

    Article  CAS  Google Scholar 

  22. Kataoka K (2014) Akimoto J. Single-crystal growth Solid State Ionics 262:106–109

    Article  CAS  Google Scholar 

  23. Gabrisch H, Kombolias M, Mohanty D (2010) Solid State Ionics 181:71–78

    Article  CAS  Google Scholar 

  24. Park JS, Meng XB, Elam JW, Hao SQ, Wolverton C, Kim C, Cabana (2014) J Chem Mater 26:3128–3134

    Article  CAS  Google Scholar 

  25. Cao H, Xia B, Zhang Y, Xu N (2005) Solid State Ionics 176:911–914

    Article  CAS  Google Scholar 

  26. Kim B, Lee JG, Choi M, Cho J, Park B (2004) J Power Sources 126:190–192

    Article  CAS  Google Scholar 

  27. Ohtsu N, Hiromoto S, Yamane M, Satoh K, Tomozawa M (2013) Surf Coat Tech 218:114–118

    Article  CAS  Google Scholar 

  28. Munoz-Marquez MA, Zarrabeitia M, Castillo-Martinez E, Eguia-Barrio A, Rojo T, Casas-Cabanas M (2015) ACS Appl Mater Interfaces 7:7801–7808

    Article  CAS  Google Scholar 

  29. Cheng HM, Wang FM, Chu JP, Santhanam R, Rick J, Lo SC (2012) J Phys Chem C 116:7629–7637

    Article  CAS  Google Scholar 

  30. Chen Z, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1604–A1611

    Article  CAS  Google Scholar 

  31. Reimers JN (1992) J Electrochem Soc 139:2091–2099

    Article  CAS  Google Scholar 

  32. Lou S, Shen B, Zuo P, Yin G, Yang L, Ma Y, Cheng X, Du C, Gao Y (2015) RSC Adv 5:81235–81242

    Article  CAS  Google Scholar 

  33. Liu N, Li H, Wang Z, Huang X, Chen L (2006) Electrochem Solid-State Lett 9:A328–A335

    Article  CAS  Google Scholar 

  34. Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2012) Angew Chem Int Ed Engl 51:11597–11601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by The Natural Science Foundation of China (no. 50902038), National High Technology Research and Development Program (863 Program) of China (no. 2012AA110203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengjian Zuo or Geping Yin.

Electronic supplementary material

ESM 1

(DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Zuo, P., Fan, P. et al. Improved electrochemical performance of NaAlO2-coated LiCoO2 for lithium-ion batteries. J Solid State Electrochem 21, 1195–1201 (2017). https://doi.org/10.1007/s10008-016-3475-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3475-1

Keywords

Navigation