Skip to main content
Log in

Linen fiber template-assisted preparation of TiO2 nanotubes: palladium nanoparticle coating and electrochemical applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

TiO2 nanotubes were fabricated from TiF4 precursors within the pore channels of the linen fiber templates, resulting in crystalline fabricated titanate nanotubes (f-TNTs) upon removal by calcination at 500–600 °C. The f-TNTs were formed by the aggregation of TiO2 nanoparticles (NPs) with a diameter of 80 nm; the wall thickness and size of the f-TNTs can be controlled by adjusting the concentration of the TiF4 precursor, time, temperature, and the size of the linen fibers respectively. After that, palladium (Pd(0)) NPs were coated on the surface of the f-TNTs (Pd/f-TNTs) by the chemical reduction method, using NaBH4 as a reducing agent. The size of the Pd(0) NPs is about 10–13 nm. The Pd/f-TNT nanocomposite is systematically characterized by X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. The Pd/f-TNT nanocomposite-modified glassy carbon electrodes exhibited excellent electrocatalytic activity as well as amperometric determination of hydrazine, ascorbic acid, and dopamine; these electrochemical applications were carried out by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168–176

    Article  CAS  Google Scholar 

  2. Vernot EH, MacEwen JD, Bruner RH, Haus CC, Kinkead ER (1985) Fundam Appl Toxicol 5:1050–1064

    Article  CAS  Google Scholar 

  3. Arrigoni RO, Tullio CD (2002) Biochem Biophys Acta 1:1569–1578

    Google Scholar 

  4. O’Neill RD (1994) Analyst 119:767–779

    Article  Google Scholar 

  5. Goyal RN, Kaur D, Pandey AK (2010) Chem Biomed Methods J 3:115–122

    Article  CAS  Google Scholar 

  6. Perez RT, Martinez LC, Tomas V, Fenol J (2001) Analyst 126:1436–1439

    Article  Google Scholar 

  7. Roe JH (1961) J Biol Chem 236:1611–1613

    CAS  Google Scholar 

  8. Farajzadeh MA, Nagizadeh S (2003) J Anal Chem 58:927–932

    Article  CAS  Google Scholar 

  9. Yebra MC, Cespon RM, Moreno CA (2001) Anal Chim Acta 448:157–164

    Article  CAS  Google Scholar 

  10. Emadi KP, Verjee Z, Levin AV, Adeli K (2005) Clin Biochem 38:450–456

    Article  Google Scholar 

  11. Silva FO (2005) Food Control 16:55–58

    Article  CAS  Google Scholar 

  12. Onelli E, Mosca A (1994) Life Chem Rep 110:189–198

    Google Scholar 

  13. Thiagarajan S, Tsai TH, Chen SM (2009) Biosens Bioelectron 24:2712–2715

    Article  CAS  Google Scholar 

  14. Strohm H, Lobmann P (2004) J Mater Chem 14:2667–2673

    Article  CAS  Google Scholar 

  15. Zhang J, Wang S, Wang Y, Zhu B, Xia H, Guo X, Zhang S, Huang W, Wu S (2009) Sensors Actuators B 135:610–617

    Article  Google Scholar 

  16. Jun Z, Shurong W, Yan W, Mijuan X, Huijuan X, Shoumin Z, Weiping H, Xianzhi G, Shihua W (2009) Sensors Actuators B 139:411–417

    Article  Google Scholar 

  17. Wu HQ, Wei XW, Shao MW, Gu JS, Qu MZ (2002) Chemical Phys Lett 364:152–156

    Article  CAS  Google Scholar 

  18. Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao CNR (1997) J Mater Res 12:604–606

    Article  CAS  Google Scholar 

  19. Hiroaki I, Manabu M, Kazuhiko S, Hiroshi H (2000) J Mater Chem 10:2005–2006

    Article  Google Scholar 

  20. Hiroaki I, Yuko T, Kazuhiko S, Manabu M (1999) J Mater Chem 9:2971–2972

    Article  Google Scholar 

  21. Chen J, Xia N, Zhou T, Tan S, Jiang F, Yuan D (2009) Int J Electrochem Sci 4:1063–1073

    CAS  Google Scholar 

  22. Laura TM, Lapkina AA, Bavykin DV, Walsh FC, Wilson K (2007) J Catal 245:272–278

    Article  Google Scholar 

  23. Bavykin DV, Walsh FC (2009) Eur J Inorg Chem 8:977–997

    Article  Google Scholar 

  24. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  25. Qingfeng Y, Wenqiang Y (2009) Microchim Acta 165:381–386

    Article  Google Scholar 

  26. Yu J, Liu W, Yu H (2008) Crystal Growth Des 8:930–934

    Article  CAS  Google Scholar 

  27. Ibusuki T, Takeuchi K (1994) J Mol Catal 88:93–102

    Article  CAS  Google Scholar 

  28. Hagfeldt A, Graetzel M (1995) Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  29. Chu SZ (2007) Electrochim Acta 53:92–99

    Article  CAS  Google Scholar 

  30. Mmuriciano LT, Lapkin A (2007) J Catal 245:272–278

    Article  Google Scholar 

  31. Lee CR, Lee HK, Lee JS, Cairns EJ (2001) J Power Sources 102:172–177

    Article  Google Scholar 

  32. Qingfeng Y, Wengiang Y, Gang ZX (2009) Micro Chim Acta 165:381–386

    Article  Google Scholar 

  33. Wang YZ, Gang ZX (2004) Electrochim Acta 49:1957–1962

    Article  CAS  Google Scholar 

  34. Jing B, Bin Q (2009) Microporous Mesoprous Mater 119:193–199

    Article  Google Scholar 

  35. Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) Adv Funct Mater 18:591–599

    Article  CAS  Google Scholar 

  36. Wang M, Guo DJ, Li H (2005) J Solid State Chem 178:1996–2000

    Article  CAS  Google Scholar 

  37. Li G, Gray KA (2007) Chem Phys 339:173–187

    Article  CAS  Google Scholar 

  38. Diculescu VC, Chiorcea-Paquim AM, Corduneanu O, Oliveira-Brett AM (2007) J Solid State Electrochem 11:887–898

    Article  CAS  Google Scholar 

  39. Lukaszewski M, Kedra T, Czerwinski A (2009) Electrochem Commun 11:978–982

    Article  CAS  Google Scholar 

  40. Lukaszewski M, Czerwinski A (2003) Electrochim Acta 48:2435–2445

    Article  CAS  Google Scholar 

  41. Luo H, Park S, Yeung H, Chan H, Weaver MJ (2000) J Phys Chem B 104:8250–8258

    Article  CAS  Google Scholar 

  42. Safavi A, Maleki N, Tajabadi F, Farjami E (2007) Electrochem Commun 9:1963–1968

    Article  CAS  Google Scholar 

  43. Bard AJ (1963) Anal Chem 35:1602–1607

    Article  CAS  Google Scholar 

  44. Guo DJ, Li HL (2005) J Colloid Interf Sci 286:274–279

    Article  CAS  Google Scholar 

  45. Sathish R, Kumara Swamy BE, Chandra U, Sherigara BS (2010) Int J Electrochem Sci 5:10–17

    Google Scholar 

  46. Colleran JJ, Bresli CB (2012) J Electroanal Chem 667:30–37

    Article  CAS  Google Scholar 

  47. Liu A, Wei M, Honma I, Zhou H (2006) Adv Funct Mater 16:371–376

    Article  CAS  Google Scholar 

  48. Rajendra NG, Davinder K, Ashish KP (2010) Chem Biomed Methods J 3:115–122

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Council of Scientific and Industrial Research (CSIR) in New Delhi, India. The FESEM and HRTEM facilities were provided by the National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, M., Pandian, K. Linen fiber template-assisted preparation of TiO2 nanotubes: palladium nanoparticle coating and electrochemical applications. J Solid State Electrochem 17, 1117–1125 (2013). https://doi.org/10.1007/s10008-012-1981-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1981-3

Keywords

Navigation