Skip to main content

Advertisement

Log in

Light energy accumulation using Ti/RuO2 electrode as capacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study, the possibility to use Ti/RuO2 electrode as capacitor for storage of photoelectrons generated under UV irradiation in Ti/TiO2 photoelectrode has been investigated. A light-sensitive TiO2 layer has been formed by means of anodizing Ti electrode in the solution of 0.5 M H2SO4. A layer of RuO2, exhibiting the properties of electrochemical capacitor, has been formed by means of thermal decomposition of RuOHCl3 also on Ti substrate. The photocharging capability of RuO2 has been studied by means of short-circuiting Ti/RuO2 electrode with Ti/TiO2 photoelectrode in deaerated solution of 0.1 M KOH. It has been shown that the intensity of photocurrent flowing from Ti/TiO2 to Ti/RuO2 electrode depends mainly on the potential of the latter. Maximum value of photocurrent density was ∼180 μA cm−2, which corresponded to maximum value of photon-to-electron conversion efficiency (IPCE) of about 60%. The amount of photogenerated charge Q ph, which can be stored, depends on the capacitance of RuO2 coating. Under the conditions of the experiment, Q ph ranged from ∼35 to ∼50 mC, which corresponded to a specific charge of RuO2 coating ranging between ∼20 and ∼30 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamat PV (2007) J Phys Chem 111:2834

    CAS  Google Scholar 

  2. Wang CT, Huang HH (2008) J Non-Cryst Solids 28:3336. doi:10.1016/j.jnoncrysol.2008.02.005

    Article  Google Scholar 

  3. Tatsuma T, Saitoh S, Ohko Y, Fujishima A (2001) Chem Mater 13:2838. doi:10.1021/cm010024k

    Article  CAS  Google Scholar 

  4. Akuto K, Sakurai Y (2001) J Electrochem Soc 148:A121. doi:10.1149/1.1339867

    Article  CAS  Google Scholar 

  5. Akuto K, Takahashi M, Sakurai Y (2001) J Power Sources 103:72. doi:10.1016/S0378-7753(01)00834-5

    Article  CAS  Google Scholar 

  6. Subasri R, Shinohara T (2003) Electrochem Commun 5:897. doi:10.1016/j.elecom.2003.08.016

    Article  CAS  Google Scholar 

  7. Ngaotrakanwiwat P, Tatsuma T (2004) J Electroanal Chem 573:236. doi:10.1016/j.jelechem.2004.07.012

    Article  Google Scholar 

  8. Fujishima A, Zhang X, Tryk AD (2008) Surf Sci Rep 63:515. doi:10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  9. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735. doi:10.1021/cr00035a013

    Article  CAS  Google Scholar 

  10. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sust Ener Rev 11:401. doi:10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  11. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Int J Hydrogen Energy 32:2609. doi:10.1016/j.ijhydene.2006.09.004

    Article  CAS  Google Scholar 

  12. Kawakita J, Shinohara T, Kuroda S, Suzuki M, Sodeka S (2008) Surf Coat Tech 202:4028. doi:10.1016/j.surfcoat.2008.02.006

    Article  CAS  Google Scholar 

  13. Takahashi Y, Ngaotrakanwiwat P, Tatsuma T (2004) Electrochim Acta 49:2025. doi:10.1016/j.electacta.2003.12.032

    Article  CAS  Google Scholar 

  14. Trasatti S (1980) Electrodes of conductive metallic oxides, Parts A, B. Elsevier, Amsterdam

    Google Scholar 

  15. Hu CC, Chen WC (2004) Electrochim Acta 49:3469. doi:10.1016/j.electacta.2004.03.017

    Article  CAS  Google Scholar 

  16. Beranek R, Hildebrand H, Schmuki P (2003) Solid State Lett 6:B12. doi:10.1149/1.1545192

    Article  CAS  Google Scholar 

  17. Choi JS, Wehspohn RB, Lee J, Gosele U (2004) Electrochim Acta 49:2645. doi:10.1016/j.electacta.2004.02.015

    Article  CAS  Google Scholar 

  18. Poznyak SK, Talapin DV, Kulak AI (2005) J Electroanal Chem 579:299. doi:10.1016/j.jelechem.2005.03.002

    Article  CAS  Google Scholar 

  19. Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Electrochim Acta 52:1742. doi:10.1016/j.electacta.2006.02.054

    Article  CAS  Google Scholar 

  20. Gujar TP, Shinde VR, Lokhande DC, Kim WY, Jung KD, Joo OS (2007) Electrochem Commun 9:504. doi:10.1016/j.elecom.2006.10.017

    Article  CAS  Google Scholar 

  21. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699. doi:10.1149/1.2050077

    Article  CAS  Google Scholar 

  22. Juodkazis K, Juodkazytė J, Šukienė V, Grigucevičienė A, Selskis A (2008) J Solid State Electrochem 12:1399. doi:10.1007/s10008-007-0476-0

    Article  CAS  Google Scholar 

  23. Juodkazytė J, Vilkauskaitė R, Šebeka B, Juodkazis K (2007) Trans IMF 4:1

    Google Scholar 

  24. Chang CC, Wen TC (1997) Mater Chem Phys 47:203. doi:10.1016/S0254-0584(97)80052-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Juodkazytė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juodkazytė, J., Šebeka, B., Kalinauskas, P. et al. Light energy accumulation using Ti/RuO2 electrode as capacitor. J Solid State Electrochem 14, 741–746 (2010). https://doi.org/10.1007/s10008-009-0843-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0843-0

Keywords

Navigation