Skip to main content

Advertisement

Log in

On the charge storage mechanism at RuO2/0.5 M H2SO4 interface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of \({\text{RuO}}_2^ + \cdot \left( {{\text{OH}}^ - } \right)_{{\text{ad}}} \) ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:

$${\text{RuO}}_{2} \cdot {\text{H}}_{2} {\text{O}} \Leftrightarrow {\text{RuO}}^{ + }_{2} \cdot {\left( {{\text{OH}}^{ - } } \right)}_{{{\text{ad}}}} + {\text{H}}^{ + } + {\text{e}}^{ - } _{{{\left( {{\text{CB}}} \right)}}} ,$$

where \({\text{RuO}}_2^ + \) and \({\text{e}}^{ - } _{{{\left( {{\text{CB}}} \right)}}} \) represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu CC, Chen WC, Chang KH (2004) J Electrochem Soc 151 A:281

    Article  Google Scholar 

  2. Hu CC, Chen WC (2004) Electrohim Acta 49:3469

    Article  CAS  Google Scholar 

  3. Conway BE (1991) J. Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  4. Conway BE (1999) Electrochemical supercapacitors. Plenum, New York

    Google Scholar 

  5. Liu T, Pell WG, Conway BE (1997) Electrochim Acta 42:3541

    Article  CAS  Google Scholar 

  6. Trasatti S, Buzzanca G (1971) J Electroanal Chem 29:App. 1

    Google Scholar 

  7. Trasatti S (1980) Electrodes of Conductive Metallic Oxides, Parts A, B. Elsevier, Amsterdam

    Google Scholar 

  8. McKeown DA, Hagans PL, Carette LP, Russell AE, Swider KE, Rolison DR (1999) J Phys Chem B 103:4825

    Article  CAS  Google Scholar 

  9. Ma Z, Zheng JP, Fu R (2000) Chem Phys Lett 331:64

    Article  CAS  Google Scholar 

  10. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  11. Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Nanotechnology 17:2865

    Article  CAS  Google Scholar 

  12. Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Electrochim Acta 49:313

    Article  CAS  Google Scholar 

  13. Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Electrochim Acta 52:1742

    Article  CAS  Google Scholar 

  14. Burke LD, Naser NS (2005) J Appl Electrochem 35:931

    Article  CAS  Google Scholar 

  15. Juodkazytė J, Šebeka B, Valsiūnas I, Juodkazis K (2005) Electroanal 17:947

    Article  Google Scholar 

  16. Juodkazytė J, Vilkauskaitė R, Stalnionis G, Šebeka B, Juodkazis K (2007) Electroanal 19:1093

    Article  Google Scholar 

  17. Santos MC, Terezo AJ, Fernandes VC, Pereira EC, Bulhoes LOS (2005) J Solid State Electrochem 9:91

    Article  CAS  Google Scholar 

  18. Doubova LM, Daolio S, De Battisti A (2002) J Electroanal Chem 532:25

    Article  CAS  Google Scholar 

  19. Terezo AJ, Pereira EC (2002) Mat Lett 53:339

    Article  CAS  Google Scholar 

  20. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263

    Article  CAS  Google Scholar 

  21. Patil PS, Ennaoui A, Lokhande CD, Muller M, Giersig M, Diesner K, Tributsch H (1997) Thin Solid Films 310:57

    Article  CAS  Google Scholar 

  22. Gujar TP, Shinde VR, Lokhande DC, Kim WY, Jung KD, Joo OS (2007) Electrochem Comm 9:504

    Article  CAS  Google Scholar 

  23. Chueh YL, Hsieh, Chang MT, Chou LJ, Lao, Song JH, Gan JY, Wang ZL (2007) Adv Mater 19:143

    Article  CAS  Google Scholar 

  24. De Almeida JS, Ahuja R (2006) Phys Rev B 73:165102

    Article  Google Scholar 

  25. Juodkazytė J, Vilkauskaitė R, Šebeka B, Juodkazis K (2007) Trans Met Finish 85:194

    Article  Google Scholar 

  26. Michell D, Rand DAJ, Woods R (1978) J Electroanal Chem 89:11

    Article  CAS  Google Scholar 

  27. Pourbaix M (1963) Atlas d’equilibres electrochimiques. Gauthier-Villars, Paris

    Google Scholar 

  28. Mo Y, Antonio MR, Scherson DA (2000) J Phys Chem B 104:9777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Juodkazis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juodkazis, K., Juodkazytė, J., Šukienė, V. et al. On the charge storage mechanism at RuO2/0.5 M H2SO4 interface. J Solid State Electrochem 12, 1399–1404 (2008). https://doi.org/10.1007/s10008-007-0476-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0476-0

Keywords

Navigation