Skip to main content
Log in

Electrochemical materials science: tailoring intrinsically conducting polymers. The example: substituted thiophenes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of 3-(p-X-phenyl) thiophene monomers (X= –H, –CH3, –OCH3, –COCH3, –COOC2H5, –NO2) was electrochemically polymerized to furnish polymer films that could be reversibly reduced and oxidized (n- and p-doped). The oxidation potentials of the monomers and formal potentials of the n- and p-doping processes of polymers were correlated with resonance and inductive effects of the substituents on the phenyl ring as well as the semiempirically calculated heat of formation of the monomer radical cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Santhanam KSV, Gupta N (1993) TRIP 1:284

    CAS  Google Scholar 

  2. Panero S, Passerini S, Scrosati B (1993) Mol Cryst Liq Cryst 229:97

    Article  CAS  Google Scholar 

  3. Huang SC, Huang SM, Ng H, Kaner RB (1993) Synth Met 55–57:4047

    Article  Google Scholar 

  4. Baughman RH (1991) Makromol Chem Macromol Symp 51:193

    CAS  Google Scholar 

  5. Conway BE (1991) Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  6. Mastragostino M, Arbizzani C, Bongini A, Barbarella G, Zambianchi M (1993) Electrochim Acta 38:135

    Article  CAS  Google Scholar 

  7. Posudievskii OY, Konoshchuk NV, Il’in VG, Pokhodenko VD (2002) Theor Exp Chem 38:283

    Article  CAS  Google Scholar 

  8. Xu Y, Loveday DC, Ferraris JP, Smith DW Jr (1998) Polymer Reprints 39:143

    CAS  Google Scholar 

  9. Heinze J (1990) Top Curr Chem 152:1

    Article  CAS  Google Scholar 

  10. Chandler GK, Pletcher D (1985) Electrochemistry 10:117

    Article  CAS  Google Scholar 

  11. Diaz AF, Castillo JI, Logan JA, Lee W-Y (1981) J Electroanal Chem 129:115

    Article  CAS  Google Scholar 

  12. Otero TF, Tejada R, Elola AS (1987) Polymer 28:651

    Article  CAS  Google Scholar 

  13. Street GB, Clarke TC, Geiss RH, Lee VY, Nazzal A, Pfluger P, Scott JC (1983) J Phys C 3(44):599

    Google Scholar 

  14. Gottesfeld S, Redondo A, Feldberg SW (1987) J Electrochem Soc 134:271

    Article  CAS  Google Scholar 

  15. Kalaji M, Peter LM, Abrantes LM, Mesquita JC (1989) J Electroanal Chem 274:289

    Article  CAS  Google Scholar 

  16. Sato M, Tanaka S, Kaeriyama K(1987) J Chem Soc, Chem Commun 1725

  17. Sato M, Tanaka S, Kaeriyama K (1989) Makromol Chem 190:1233

    Article  CAS  Google Scholar 

  18. Onoda M, Nakayama H, Morita S, Yashino K (1993) Synth Met 55–57:275

    Article  Google Scholar 

  19. Guerrero DJ, Ren X, Ferraris JP (1994) Chem Mater 6:1437

    Article  CAS  Google Scholar 

  20. Rieke RD, Kim S-H, Wu X (1997) J Org Chem 62:6921

    Article  CAS  Google Scholar 

  21. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill MWP, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.3. Gaussian Inc., Pittsburgh

  23. Dewar M, Thiel W (1977) J Am Chem Soc 99:4499

    Article  PubMed  Google Scholar 

  24. Marque P, Roncali J, Garnier F (1987) J Electroanal Chem 218:107

    Article  CAS  Google Scholar 

  25. Ue M, Ida K, Mori S (1994) J Electrochem Soc 141:2989

    Article  CAS  Google Scholar 

  26. Barthel J, Gores HJ, Schmeer G, Wechter R (1983) Top Curr Chem 111:33

    CAS  Google Scholar 

  27. Ferraris JP, Eissa MM, Brotherston ID, Loveday DC, Moxey AA (1998) J Electroanal Chem 459:57

    Article  CAS  Google Scholar 

  28. Rudge A, Raistrick I, Gottesfeld S, Ferraris JF (1994) Electrochim Acta 39:273

    Article  CAS  Google Scholar 

  29. Borjas R, Buttry DA (1991) Chem Mater 3:872

    Article  CAS  Google Scholar 

  30. Mastragostino M and Soddn L (1990) Electrochim Acta 35:463

    Article  CAS  Google Scholar 

  31. Pokhodenko VD, Krylov VA (1991) Synth Met 41–43:533

    Article  Google Scholar 

  32. Roncali J (1992) Chem Rev 92:711

    Article  CAS  Google Scholar 

  33. Ambrose JF, Nelson RF (1968) J Electrochem Soc 92:1161

    Google Scholar 

  34. Adams RN (1969) Acc Chem Res 2:175

    Article  CAS  Google Scholar 

  35. Dian G, Barbey G, Decroix B (1986) Synth Met 13:281

    Article  CAS  Google Scholar 

  36. March J (1992) Advanced organic chemistry 4th edn. Wiley, New York, pp 280ff

    Google Scholar 

  37. Gofer Y, Killian JG, Sarker H, Pochler TO, Searson PC (1998) J Electroanal Chem 413:103

    Article  Google Scholar 

  38. Wahman RJ, Bargon J, Diaz AF (1983) J Phys Chem 87:1459

    Article  Google Scholar 

  39. Wahman RJ, Diaz AF, Bargon J (1984) J Phys Chem 88:4343

    Article  Google Scholar 

  40. Sarker H, Gofer Y, Killian JG, Pohler TO, Searson PC (1997) Synth Met 88:179

    Article  CAS  Google Scholar 

  41. Kinbara E, Kunugi Y, Harima Y, Yamashita K (2000) Synth Met 114:295

    Article  CAS  Google Scholar 

  42. Roncali J (1997) Chem Rev 97:173

    Article  PubMed  CAS  Google Scholar 

  43. Chung C-C, Kaufman JH, Heeger AJ, Wudl F (1985) Mol Cryst Liq Cryst 118:205

    Article  CAS  Google Scholar 

  44. March J (1992) Advanced organic chemistry 4th edn. Wiley, New York, pp 242–250

  45. Carey FA, Sundberg RJ (1993) Advanced organic chemistry 3rd edn. Plenum, New York, pp 196–210

    Google Scholar 

  46. Zuman P (1967) Substituent effects in organic polarography. Plenum, New York

    Google Scholar 

  47. Abruna HD, Denisevich P, Umana M, Meyer TJ, Murray RW (1981) J Am Chem Soc 103:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the fonds of the Chemische Industrie and the Deutsche Forschungsgemeinschaft (Graduiertenkolleg GRK 829/1) is gratefully acknowledged.. We are grateful to K. Banert for helpful discussions and support in synthesis of the monomers. Finally we thank H.-J. Schäfer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Additional information

Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13-16, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alhalasah, W., Holze, R. Electrochemical materials science: tailoring intrinsically conducting polymers. The example: substituted thiophenes. J Solid State Electrochem 9, 836–844 (2005). https://doi.org/10.1007/s10008-005-0024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0024-8

Keywords

Navigation