Skip to main content
Log in

Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Quinoxaline 1,4-di-N-oxide is a scaffold with a wide array of biological activities, particularly its use to develop new antiparasitic agents. Recently, these compounds have been described as trypanothione reductase (TR), triosephosphate isomerase (TIM), and cathepsin-L (CatL) inhibitors from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica, respectively.

Methods

Therefore, the main objective of this work was to analyze quinoxaline 1,4-di-N-oxide derivatives of two databases (ZINC15 and PubChem) and literature by molecular docking, dynamic simulation and complemented by MMPBSA, and contact analysis of molecular dynamics’ trajectory on the active site of the enzymes to know their potential effect inhibitory. Interestingly, compounds Lit_C777 and Zn_C38 show preference as potential TcTR inhibitors over HsGR, with favorable energy contributions from residues including Pro398 and Leu399 from Z-site, Glu467 from γ-Glu site, and His461, part of the catalytic triad. Compound Lit_C208 shows potential selective inhibition against TvTIM over HsTIM, with favorable energy contributions toward TvTIM catalytic dyad, but away from HsTIM catalytic dyad. Compound Lit_C388 was most stable in FhCatL with a higher calculated binding energy by MMPBSA analysis than HsCatL, though not interacting with catalytic dyad, holding favorable energy contribution from residues oriented at FhCatL catalytic dyad. Therefore, these kinds of compounds are good candidates to continue researching and confirming their activity through in vitro studies as new selective antiparasitic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the supplementary material.

References

  1. Méndez-Álvarez D, Herrera-Mayorga V, Juárez-Saldivar A et al (2021) Ligand-based virtual screening, molecular docking, and molecular dynamics of eugenol analogs as potential acetylcholinesterase inhibitors with biological activity against Spodoptera frugiperda. Mol Divers. https://doi.org/10.1007/S11030-021-10312-5

    Article  PubMed  Google Scholar 

  2. Juárez-Saldivar A, Schroeder M, Salentin S et al (2020) Computational drug repositioning for Chagas disease using protein-ligand interaction profiling. Int. J. Mol. Sci. 21:1–16. https://doi.org/10.3390/IJMS21124270

    Article  Google Scholar 

  3. Ferraro F, Merlino A, Gil J, Cathepsin L et al (2019) inhibitors with activity against the liver fluke identified from a focus library of quinoxaline 1,4-di-N-oxide derivatives. Molecules. 24(2348 24):2348. https://doi.org/10.3390/MOLECULES24132348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villalobos-Rocha JC, Sánchez-Torres L, Nogueda-Torres B et al (2014) Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol. Res. 113:2027–2035. https://doi.org/10.1007/s00436-014-3850-8

    Article  PubMed  Google Scholar 

  5. Chacón-Vargas KF, Nogueda-Torres B, Sánchez-Torres LE et al (2017) Trypanocidal activity of quinoxaline 1,4 Di-N-oxide derivatives as trypanothione reductase inhibitors. Molecules. 22:220. https://doi.org/10.3390/molecules22020220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carta A, Loriga M, Paglietti G et al (2004) Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem. 39:195–203. https://doi.org/10.1016/J.EJMECH.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  7. Rivera N, Rojas M, Zepeda A et al (2013) In vivo genotoxicity and cytotoxicity assessment of a novel quinoxalinone with trichomonacide activity. J. Appl. Toxicol. 33:1493–1499. https://doi.org/10.1002/JAT.2819

    Article  CAS  PubMed  Google Scholar 

  8. Estevez Y, Quiliano M, Burguete A et al (2011) Trypanocidal properties, structure–activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Exp. Parasitol. 127:745–751. https://doi.org/10.1016/j.exppara.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  9. Machado-Silva A, Cerqueira PG, Grazielle-Silva V et al (2016) How Trypanosoma cruzi deals with oxidative stress: antioxidant defence and DNA repair pathways. Mutat. Res. Rev. Mutat. Res. 767:8–22. https://doi.org/10.1016/j.mrrev.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  10. Palos I, Moo-Puc R, Vique-Sánchez JL et al (2021) Esters of quinoxaline-7-carboxylate-1,4-di-N-oxide as Trichomonas vaginalis triosephosphate isomerase inhibitors. Acta. Pharm. 71:485–495. https://doi.org/10.2478/ACPH-2021-0032

    Article  CAS  PubMed  Google Scholar 

  11. Benítez-Cardoza CG, Brieba LG, Arroyo R, et al (2021) Triosephosphate isomerase as a therapeutic target against trichomoniasis. Molecular and Biochemical Parasitology 246. https://doi.org/10.1016/j.molbiopara.2021.111413

  12. Vique-Sánchez JL, Caro-Gómez LA, Brieba LG, Benítez-Cardoza CG (2020) Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase. Parasitol. Int. 76:102086. https://doi.org/10.1016/J.PARINT.2020.102086

    Article  PubMed  Google Scholar 

  13. Vázquez-Jiménez LK, Moreno-Herrera A, Juárez-Saldivar A, et al (2021) Recent advances in the development of triose phosphate isomerase inhibitors as antiprotozoal agents. Curr Med Chem 28. https://doi.org/10.2174/0929867328666210913090928

  14. Ferraro F, Merlino A, dell´Oca N, et al (2016) Identification of chalcones as Fasciola hepatica cathepsin L inhibitors using a comprehensive experimental and computational approach. PLoS Negl Trop Dis 10. https://doi.org/10.1371/JOURNAL.PNTD.0004834

  15. Wijffels GL, Panaccio M, Salvatore L et al (1994) The secreted cathepsin L-like proteinases of the trematode, Fasciola hepatica, contain 3-hydroxyproline residues. Biochem J 299:781. https://doi.org/10.1042/BJ2990781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/JCC.20084

    Article  CAS  PubMed  Google Scholar 

  17. O’boyle NM, Banck M, James CA, et al (2011) Open Babel: an open chemical toolbox. https://doi.org/10.1186/1758-2946-3-33

  18. Forli S, Huey R, Pique ME et al (2016) (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5 11):905–919. https://doi.org/10.1038/nprot.2016.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31:455–461. https://doi.org/10.1002/JCC.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alvarez G, Martínez J, Aguirre-López B et al (2014) New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition. J. Enzyme. Inbitition. Med. Chem. 29:198–204. https://doi.org/10.3109/14756366.2013.765415

    Article  CAS  Google Scholar 

  21. Álvarez G, Aguirre-López B, Varela J et al (2010) Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur. J. Med. Chem. 45:5767–5772. https://doi.org/10.1016/J.EJMECH.2010.09.034

    Article  PubMed  Google Scholar 

  22. Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic. Acids. Res. 49:W530–W534. https://doi.org/10.1093/NAR/GKAB294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001

    Article  Google Scholar 

  24. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24:1999–2012. https://doi.org/10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J. Comput. Chem. 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  28. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J. Chem. Phys. 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  29. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  30. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  31. Polishchuk P, Kutlushina A, Bashirova D et al (2019) Virtual screening using pharmacophore models retrieved from molecular dynamic simulations. Int J Mol Sci 20(5834 20):5834. https://doi.org/10.3390/IJMS20235834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemkul JA (2019) From proteins to perturbed Hamiltonians a suite of tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living. J. Comput. Mol. Sci. 1:5068–5068. https://doi.org/10.33011/LIVECOMS.1.1.5068

    Article  Google Scholar 

  33. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald: An N ⋅log( N ) Method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463:AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  35. Bouysset C, Fiorucci S (2021) ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminform. 13:72. https://doi.org/10.1186/s13321-021-00548-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa —a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  37. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA. 98:10037–10041. https://doi.org/10.1073/pnas.181342398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salentin S, Haupt VJ, Daminelli S, Schroeder M (2014) Polypharmacology rescored: protein–ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol. 116:174–186. https://doi.org/10.1016/j.pbiomolbio.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  39. Torres E, Moreno-Viguri E, Galiano S et al (2013) Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur. J. Med. Chem. 66:324–334. https://doi.org/10.1016/j.ejmech.2013.04.065

    Article  CAS  PubMed  Google Scholar 

  40. Chang TC, Park JH, Colquhoun AN et al (2018) Evaluating the catalytic importance of a conserved Glu97 residue in triosephosphate isomerase. Biochem. Biophys. Res. Commun. 505:492–497. https://doi.org/10.1016/J.BBRC.2018.09.076

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Secretaria de Investigacion y Posgrado del Instituto Politecnico Nacional (Grants 20220935 and 20230935).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Alonzo González-González, Domingo Méndez-Álvarez, and Lenci K. Vázquez-Jiménez, Timoteo Delgado-Maldonado, Eyra Ortiz-Pérez, Alma D. Paz-González, Debasish Bandyopadhyay, and Gildardo Rivera. The first draft of the manuscript was written by Alonzo Gonzalez-Gonzalez, and Gildardo Rivera, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gildardo Rivera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-González, A., Méndez-Álvarez, D., Vázquez-Jiménez, L.K. et al. Molecular docking and dynamic simulations of quinoxaline 1,4-di-N-oxide as inhibitors for targets from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica. J Mol Model 29, 180 (2023). https://doi.org/10.1007/s00894-023-05579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05579-4

Keywords

Navigation