Skip to main content
Log in

Synthetic account on indoles and their analogues as potential anti-plasmodial agents

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38

Similar content being viewed by others

Abbreviations

CQ:

Chloroquine

DCM:

Dichloromethane

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DME:

Dimethyl ether

G6PD:

Glucose-6-phosphate dehydrogenase

M. tuberculosis :

Mycobacterium tuberculosis

MIC:

Minimum inhibitory concentration

P. berghei :

M. tuberculosisPlasmodium berghei

P. falciparum :

Plasmodium falciparum

P. knowlesi :

Plasmodium knowlesi

P. malariae :

Plasmodium malariae

P. ovale :

Plasmodium ovale

Pd(PPh3)4 :

bis(triphenylphosphine)palladium(II)

Pyr:

Pyrimethamine

TBAF:

Tetra-butyl ammonium fluoride

TFA:

Trifluoroacetic acid

References

  1. Bray RS, Garnham PCC (1982) The life-cycle of primate malaria parasites. Br Med Bull 38:117–122

    Article  CAS  PubMed  Google Scholar 

  2. Gerald N, Mahajan B, Kumar S (2011) Mitosis in the human malaria parasite plasmodium falciparum. Eukaryot Cell 10:474–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Malaria Report (2022), World Helath Organization (WHO). https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022. Accessed 19 Feb 2023

  4. Chu CS, White NJ (2016) Management of relapsing Plasmodium Vivax malaria. Expert Rev Anti Infect Ther 14:885–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waters AP (2016) Epigenetic roulette in blood stream Plasmodium: Gambling on sex. PLoS Pathog 12:1005353

    Article  Google Scholar 

  6. Bartoloni A, Zammarchi L (2012) Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis 4:e2012026

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maqsood A, Farid MS, Khan MH (2021) Deep malaria parasite detection in thin blood smear microscopic images. Appl Sci 11:2284

    Article  CAS  Google Scholar 

  8. Zhou W, Wang H, Yang Y et al (2020) Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 25:2012–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loo CSN, Lam NSK, Yu D et al (2017) Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 117:192–217

    Article  CAS  PubMed  Google Scholar 

  10. Singh L, Singh K (2021) Ivermectin: a promising therapeutic for fighting malaria. Current status and perspective. J Med Chem 64:9711–9731

    Article  CAS  PubMed  Google Scholar 

  11. Durand R, Prendki V, Cailhol J et al (2008) Plasmodium Falciparum malaria and atovaquone-proguanil treatment failure. Emerg Infect Dis 14:320–322

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garner P (2004) Artesunate combinations for treatment of malaria: Meta-analysis. Lancet 363:9–17

    Article  PubMed  Google Scholar 

  13. Makanga M, Krudsood S (2009) The clinical efficacy of artemether/lumefantrine (Coartem®). Malar J 8:S1–S5

    Article  Google Scholar 

  14. Gaillard T, Madamet M, Pradines B (2015) Tetracyclines in malaria. Malar J 14:445

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Carvalho LP, Kreidenweiss A, Held J (2021) Drug repurposing: a review of old and new antibiotics for the treatment of malaria: identifying antibiotics with a fast onset of antiplasmodial action. Molecules 26:2304

    Article  Google Scholar 

  16. Talapko J, Škrlec I, Alebić T et al (2019) Malaria: the past and the present. Microorganisms 7

  17. Ross LS, Fidock DA (2019) Elucidating mechanisms of drug-resistant Plasmodium falciparum. Cell Host Microbe 26:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Bhardwaj TR, Prasad DN, Singh RK (2018) Drug targets for resistant malaria: historic to future perspectives. Biomed Pharmacother 104:8–27

    Article  CAS  PubMed  Google Scholar 

  19. Chauhan M, Saxena A, Saha B (2021) An insight in anti-malarial potential of indole scaffold: a review. Eur J Med Chem 218:113400

    Article  CAS  PubMed  Google Scholar 

  20. Kaushik NK, Kaushik N, Attri P et al (2013) Biomedical importance of indoles. Molecules 18:6620–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thanikachalam PV, Maurya RK, Garg V, Monga V (2019) An insight into the medicinal perspective of synthetic analogs of indole: a review. Eur J Med Chem 180:562–612

    Article  CAS  PubMed  Google Scholar 

  22. Motatia DR, Amaradhia R, Ganesh T (2020) Azaindole Therapeutic agents. Bioorg Med Chem 28:115830

    Article  Google Scholar 

  23. Saiin C, Sirithunyalug B (2017) Review of the chemical structures and antimalarial activities of indole alkaloids isolated from Picrasma javanica bl. Adv Mediccinal Plant Res 5:29–36

    Article  CAS  Google Scholar 

  24. Sravanthi TV, Manju SL (2016) Indoles - A promising scaffold for drug development. Eur J Pharm Sci 91:1–10

    Article  CAS  PubMed  Google Scholar 

  25. Singh TP, Singh OM (2017) Recent progress in biological activities of indole and indole alkaloids. Mini-Reviews Med Chem 18:8–25

    Article  Google Scholar 

  26. Bhakhar KA, Sureja DK, Dhameliya TM (2022) Synthetic account of indoles in search of potential anti-mycobacterial agents: a review and future insights. J Mol Struct 1248:131522

    Article  CAS  Google Scholar 

  27. Reddy GS, Pal M (2020) Indole derivatives as anti-tubercular agents: an overview on their synthesis and biological activities. Curr Med Chem 28:4531–4568

    Article  Google Scholar 

  28. Sharma S, Monga Y, Gupta A, Singh S (2023) 2-Oxindole and related heterocycles: synthetic methodologies for their natural products and related derivatives. RSC Adv 13:14249–14267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sea R, Callyspongia S, El-hawary SS et al (2019) Bioactive brominated oxindole alkaloids from the red sea sponge Callyspongia siphonella. Mar Drugs 1–13

  30. Boddy AJ, Bull JA (2021) Stereoselective synthesis and applications of spirocyclic oxindoles. Org Chem Front 8:1026–1084

    Article  CAS  Google Scholar 

  31. Pandey S, Chauhan SS, Shivahare R et al (2016) Identification of a diverse indole-2-carboxamides as a potent antileishmanial chemotypes. Eur J Med Chem 110:237–345

    Article  CAS  PubMed  Google Scholar 

  32. Bhakhar KA, Gajjar ND, Bodiwala KB et al (2021) Identification of anti-mycobacterial agents against mmpL3: virtual screening, ADMET analysis and MD simulations. J Mol Struct 1244:130941

    Article  CAS  Google Scholar 

  33. Pacheco PAF, Santos MMM (2022) Recent progress in the development of indole-based compounds active against malaria, trypanosomiasis and leishmaniasis. Molecules 27:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Woodard CL, Li Z, Kathcart AK et al (2003) Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J Med Chem 46:3877–3882

    Article  CAS  PubMed  Google Scholar 

  35. Lopes EA, Mestre R, Fontinha D et al (2022) Discovery of spirooxadiazoline oxindoles with dual-stage antimalarial activity. Eur J Med Chem 236

  36. Surur AS, Huluka SA, Mitku ML, Asres K (2020) Indole: the after next scaffold of antiplasmodial agents? Drug Des Devel Ther 14:4855–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhakhar KA, Vaghela PV, Varakala SD et al (2022) Indole-2-carboxamides as new anti-mycobacterial agents: design, synthesis, biological evaluation and molecular modeling against mmpL3. ChemistrySelect 7:e202201813

    Article  CAS  Google Scholar 

  38. Wagaw S, Yang BH, Buchwald SL (1999) A palladium-catalyzed method for the Preparation of indoles via the Fischer Indole Synthesis. J Am Chem Soc 16

  39. Hutchins SM, Chapman KT (1996) Fischer indole synthesis on a solid support. Tetrahedron Lett 37:5–8

    Article  Google Scholar 

  40. Nakazaki M, Yamamoto K (1976) Direct synthesis of indole by the Fischer indole synthesis. J Org Chem 41:1877

    Article  CAS  Google Scholar 

  41. Czarnocki SJ (2006) A new approach to difficult Fischer synthesis: the use of zinc chloride catalyst in triethylene glycol under controlled microwave irradiation. Org Lett 8:8831–8834

    Google Scholar 

  42. Patil SA, Patil R, Miller DD (2011) Microwave-assisted synthesis of medicinally relevant indoles. Curr Med Chem 18:615–637

    Article  CAS  PubMed  Google Scholar 

  43. Ghavami M, Merino EF, Yao ZK et al (2018) Biological studies and target engagement of the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD)-targeting antimalarial agent (1R,3S)-MMV008138 and analogs. ACS Infect Dis 4:549–559

    Article  CAS  PubMed  Google Scholar 

  44. Taber DF, Tirunahari PK (2011) Indole synthesis: a review and proposed classification. Tetrahedron 67:7195–7210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dhameliya TM, Kathuria D, Patel TM et al (2023) A quinquennial review on recent advancements and developments in search of anti-malarial agents. Curr Top Med Chem 23:753–790

    Article  CAS  PubMed  Google Scholar 

  46. Dhameliya TM, Devani AA, Patel KA, Shah KC (2022) Comprehensive coverage on anti-mycobacterial endeavour reported in 2021. ChemistrySelect 7:e202200921

    Article  CAS  Google Scholar 

  47. Dhameliya TM, Chudasma SJ, Patel TM, Dave BP (2022) A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers 26:2967–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dhameliya TM, Bhakhar KA, Gajjar ND et al (2022) Recent advancements and developments in search of anti-tuberculosis agents: a quinquennial update and future directions. J Mol Struct 1248:131473

    Article  CAS  Google Scholar 

  49. Dhameliya TM, Vekariya DD, Patel HY, Patel JT (2023) Comprehensive coverage on anti-mycobacterial endeavour reported during 2022. Eur J Med Chem 255:115409

    Article  CAS  PubMed  Google Scholar 

  50. Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM (2022) The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 361:119664

    Article  CAS  Google Scholar 

  51. Kumar A, Dhameliya TM, Sharma K et al (2022) Environmentally benign approaches towards the synthesis of quinolines. ChemistrySelect 7:e202201059

    Article  CAS  Google Scholar 

  52. Kumar A, Dhameliya TM, Sharma K et al (2022) Sustainable approaches towards the synthesis of quinoxalines: an update. J Mol Struct 1259:132732

    Article  CAS  Google Scholar 

  53. Dhameliya TM, Nagar PR, Bhakhar KA et al (2022) Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: a spotlight. J Mol Liq 348:118329

    Article  CAS  Google Scholar 

  54. Dhameliya TM, Patel RJ, Amin RH et al (2022) Comprehensive review on metal nanoparticles catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. Mini Rev Org Chem 20:800–817

    Google Scholar 

  55. Dhameliya TM, Donga HA, Vaghela PV et al (2020) A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 10:32740–32820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verbiscar AJ (1972) Synthesis of L-p-chlorobenzyl-7-azaindole-3-a-piperidylmethanol as a potential antimalarial agent. J Med Chem 15:149–152

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal A, Srivastava K, Puri SK, Chauhan PMS (2005) Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg Med Chem Lett 15:3133–3136

    Article  CAS  PubMed  Google Scholar 

  58. Lebar MD, Hahn KN, Mutka T et al (2011) CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg Med Chem 19:5756–5762

    Article  CAS  PubMed  Google Scholar 

  59. Bharate SB, Yadav RR, Khan SI et al (2013) Meridianin G and its analogs as antimalarial agents. Medchemcomm 4:1042–1048

    Article  CAS  Google Scholar 

  60. Vandekerckhove S, Desmet T, Tran HG et al (2014) Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 24:1214–1217

    Article  CAS  PubMed  Google Scholar 

  61. Liew LPP, Fleming JM, Longeon A et al (2014) Synthesis of 1-indolyl substituted β-carboline natural products and discovery of antimalarial and cytotoxic activities. Tetrahedron 70:4910–4920

    Article  CAS  Google Scholar 

  62. Veale CGL, Edkins AL, Mare J, De et al (2015) Facile synthesis and biological evaluation of assorted indolyl-3- amides and esters from a single, stable carbonyl nitrile intermediate. Tetrahedron Lett 56:1860–1864

    Article  CAS  Google Scholar 

  63. Santos SA, Lukens AK, Coelho L et al (2015) Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. Eur J Med Chem 102:320–333

    Article  CAS  PubMed  Google Scholar 

  64. Yadav RR, Khan SI, Singh S et al (2015) Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur J Med Chem 98:160–169

    Article  CAS  PubMed  Google Scholar 

  65. Svogie AL, Isaacs M, Hoppe HC et al (2016) Indolyl-3-ethanone-α-thioethers: a promising new class of non-toxic antimalarial agents. Eur J Med Chem 114:79–88

    Article  CAS  PubMed  Google Scholar 

  66. Lunga MJ, Chisango RL, Weyers C et al (2018) Expanding the SAR of nontoxic antiplasmodial indolyl-3-ethanone ethers and thioethers. ChemMedChem 13:1353–1362

    Article  CAS  PubMed  Google Scholar 

  67. Verma G, Chashoo G, Ali A et al (2018) Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg Chem 77:106–124

    Article  CAS  PubMed  Google Scholar 

  68. Luthra T, Nayak AK, Bose S et al (2019) Indole based antimalarial compounds targeting the melatonin pathway: their design, synthesis and biological evaluation. Eur J Med Chem 168:11–27

    Article  CAS  PubMed  Google Scholar 

  69. Ho D, Nasereddin A, Alder A et al (2021) Synthesis and antiplasmodial activity of bisindolylcyclobutenediones. Molecules 26:4739

    Article  Google Scholar 

  70. Li R, Ling D, Tang T et al (2021) Discovery of novel Plasmodium Falciparum HDAC1 inhibitors with dual-stage antimalarial potency and improved safety based on the clinical anticancer drug candidate quisinostat. J Med Chem 64:2254–2271

    Article  CAS  PubMed  Google Scholar 

  71. Wright CW, Addae-Kyereme J, Breen AG et al (2001) Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J Med Chem 44:3187–3194

    Article  CAS  PubMed  Google Scholar 

  72. Jonckers THM, Van Miert S, Cimanga K et al (2002) Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J Med Chem 45:3497–3508

    Article  CAS  PubMed  Google Scholar 

  73. Onyeibor O, Croft SL, Dodson HI et al (2005) Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J Med Chem 48:2701–2709

    Article  CAS  PubMed  Google Scholar 

  74. Kgokong JL, Smith PP, Matsabisa GM (2005) 1,2,4-Triazino-[5,6b]indole derivatives: effects of the trifluoromethyl group on in vitro antimalarial activity. Bioorg Med Chem 13:2935–2942

    Article  CAS  PubMed  Google Scholar 

  75. Mardenborough LG, Zhu XY, Fan P et al (2005) Identification of bis-quindolines as new antiinfective agents. Bioorg Med Chem 13:3955–3963

    Article  CAS  PubMed  Google Scholar 

  76. Van Baelen G, Hostyn S, Dhooghe L et al (2009) Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues. Bioorg Med Chem 17:7209–7217

    Article  PubMed  Google Scholar 

  77. El Sayed I, Van Der Veken P, Steert K et al (2009) Synthesis and antiplasmodial activity of aminoalkylamino-substituted neocryptolepine derivatives. J Med Chem 52:2979–2988

    Article  CAS  PubMed  Google Scholar 

  78. Peng J, Kudrimoti S, Prasanna S et al (2010) Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J Med Chem 53:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whittell LR, Batty KT, Wong RPM et al (2011) Synthesis and antimalarial evaluation of novel isocryptolepine derivatives. Bioorg Med Chem 19:7519–7525

    Article  CAS  PubMed  Google Scholar 

  80. Thompson MJ, Louth JC, Little SM et al (2012) Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents. ChemMedChem 7:578–586

    Article  CAS  PubMed  Google Scholar 

  81. Mei ZW, Wang L, Lu WJ et al (2013) Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on indolo[2,3-b]quinolines. J Med Chem 56:1431–1442

    Article  CAS  PubMed  Google Scholar 

  82. Bouaziz Z, Issa S, Gentili J et al (2015) Biologically active carbazole derivatives: focus on oxazinocarbazoles and related compounds. J Enzyme Inhib Med Chem 30:180–188

    Article  CAS  PubMed  Google Scholar 

  83. Aguiar ACC, Panciera M, Simao Dos Santos EF et al (2018) Discovery of marinoquinolines as potent and fast-acting Plasmodium Falciparum inhibitors with in vivo activity. J Med Chem 61:5547–5568

    Article  CAS  PubMed  Google Scholar 

  84. Mudududdla R, Mohanakrishnan D, Bharate SS et al (2018) Orally effective aminoalkyl 10H-Indolo[3,2-b]quinoline-11-carboxamide kills the malaria parasite by inhibiting host hemoglobin uptake. ChemMedChem 13:2581–2598

    Article  CAS  PubMed  Google Scholar 

  85. Akkachairin B, Rodphon W, Reamtong O et al (2020) Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg Chem 98:103732

    Article  CAS  PubMed  Google Scholar 

  86. Håheim KS, Lindbäck E, Tan KN et al (2021) Synthesis and evaluation of the tetracyclic ring-system of isocryptolepine and regioiso-mers for antimalarial, antiproliferative and antimicrobial activities. Molecules 26:3268

    Article  PubMed  PubMed Central  Google Scholar 

  87. Almolhim H, Ding S, Butler JH et al (2022) Enantiopure Benzofuran-2-carboxamides of 1-aryltetrahydro-β-carbolines are potent antimalarials in vitro. ACS Med Chem Lett 13:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nepveu F, Kim S, Boyer J et al (2010) Synthesis and antiplasmodial activity of new indolone N-oxide derivatives. J Med Chem 53:699–714

    Article  CAS  PubMed  Google Scholar 

  89. Akhaja TN, Raval JP (2012) Design, synthesis and in vitro evaluation of tetrahydropyrimidine – isatin hybrids as potential antitubercular and antimalarial agents. Chin Chem Lett 23:785–788

    Article  CAS  Google Scholar 

  90. Haddad S, Boudriga S, Akhaja TN et al (2015) A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J Chem 39:520–528

    Article  CAS  Google Scholar 

  91. Butler NM, Hendra R, Bremner JB et al (2018) Cascade reactions of indigo with oxiranes and aziridines: efficient access to dihydropyrazinodiindoles and spiro-oxazocinodiindoles. Org Biomol Chem 16:6006–6016

    Article  CAS  PubMed  Google Scholar 

  92. Thakur RK, Joshi P, Upadhyaya K et al (2019) Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents. Eur J Med Chem 162:448–454

    Article  CAS  PubMed  Google Scholar 

  93. Paciaroni NG, Perry DL, Norwood VM et al (2020) Re-engineering of yohimbine’s biological activity through ring distortion: identification and structure-activity relationships of a new class of antiplasmodial agents. ACS Infect Dis 6:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jarrahpour A, Jowkar Z, Haghighijoo Z et al (2022) Synthesis, in-vitro biological evaluation, and molecular docking study of novel spiro-β-lactam-isatin hybrids. Med Chem Res 31:1026–1034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Drashtiben D. Vekariya and Pooja R. Bhatt: Literature review, writing- original draft and revised manuscript preparation; Tarun Kachroo, Kumkum D. Virani, Khushi R. Patel, Shelly Bhatt: Writing- original draft and manuscript preparation, and Tejas M. Dhameliya: Conceptualization, supervision, writing- original draft and revised manuscript preparation, reviewing & editing; and Sandip P. Dholakia: reviewing & editing.

Corresponding author

Correspondence to Tejas M. Dhameliya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhameliya, T.M., Vekariya, D.D., Bhatt, P.R. et al. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10842-8

Keywords

Navigation