Skip to main content

Advertisement

Log in

Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL3 in cancer treatment from natural compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

\({N}^{6}\)-adenosine-methyltransferase (METTL3) is the catalytic domain of the ‘writer’ proteins which is involved in the post modifications of \({N}^{6}\)-methyladinosine (\({m}^{6}A\)). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved.

Methods

In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs.

Results

Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X, Gu M (2019) Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol 9:1–9. https://doi.org/10.3389/fonc.2019.01403

    Article  Google Scholar 

  2. Huang H, Weng H, Deng X, Chen J (2020) RNA Modifications in cancer: functions, mechanisms, and therapeutic implications. Annu Rev Cancer Biol

  3. Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T et al (2020) RNA m<sup>6</sup>A modification in cancers: molecular mechanisms and potential clinical applications. Innov (Cambridge) 1:100066

    Google Scholar 

  4. Pan Y, Ma P, Liu Y, Li W, Shu Y (2018) Multiple functions of m(6)A RNA methylation in cancer. J Hematol Oncol 11:48. https://doi.org/10.1186/s13045-018-0590-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur J-J, Rentmeister A, Gross SS, Pellizzoni L, Debart F et al (2019) FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol 15:340–347. https://doi.org/10.1038/s41589-019-0231-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3’-end processing. Nucleic Acids Res 45:11356–11370. https://doi.org/10.1093/nar/gkx778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roundtree IA, Luo G-Z, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P et al (2017) Author response: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife

  8. Mao Y, Dong L, Liu X-M, Guo J, Ma H, Shen B, Qian S-B (2019) m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun 10:5332. https://doi.org/10.1038/s41467-019-13317-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han B, Yan S, Wei S, Xiang J, Liu K, Chen Z, Bai R, Sheng J, Xu Z, Gao X (2020) YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness. EMBO Rep 21:e49229. https://doi.org/10.15252/embr.201949229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjørås M et al (2018) Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol 19:69. https://doi.org/10.1186/s13059-018-1436-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Fu J, Zhou Y (2019) A review in research progress concerning m6A methylation and immunoregulation. Front Immunol 10 https://doi.org/10.3389/fimmu.2019.00922.

  12. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL et al (2020) Publisher correction: recognition of RNA N<sup>6</sup>-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 22:1288. https://doi.org/10.1038/s41556-020-00580-y

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  14. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269:17697–17704. https://doi.org/10.1016/S0021-9258(17)32497-3

    Article  CAS  PubMed  Google Scholar 

  15. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H et al (2018) VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10. https://doi.org/10.1038/s41421-018-0019-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ping XL, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, Adhikari S, Shi Y, Lv Y, Chen Y-S et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang J, Dong X, Gong Z, Qin L-Y, Yang S, Zhu Y-L, Wang X, Zhang D, Zou T, Yin P et al (2019) Solution structure of the RNA recognition domain of METTL3-METTL14 N<sup>6</sup>-methyladenosine methyltransferase. Protein Cell 10:272–284. https://doi.org/10.1007/s13238-018-0518-7

    Article  CAS  PubMed  Google Scholar 

  18. Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326. https://doi.org/10.1038/nrm3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13:1–15. https://doi.org/10.1186/s13045-020-00951-w

    Article  CAS  Google Scholar 

  20. Martin GH, Park CY (2018) Meddling with METTLs in normal and leukemia stem cells. Cell Stem Cell 22:139–141. https://doi.org/10.1016/j.stem.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  21. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG et al (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593:597–601. https://doi.org/10.1038/s41586-021-03536-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Wei L, Law C-T, Tsang FH-C, Shen J, Cheng CL-H, Tsang L-H, Ho DW-H, Chiu DK-C, Lee JM-F et al (2018) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67:2254–2270. https://doi.org/10.1002/hep.29683

    Article  CAS  PubMed  Google Scholar 

  23. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W, Ye L (2018) HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7 g. Cancer Lett 415:11–19. https://doi.org/10.1016/j.canlet.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, Cheng W, Zou C, Zheng Y, Wu X et al (2019) N6-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res

  25. Pan T, Wu F, Li L, Wu S, Zhou F, Zhang P, Sun C, Xia L (2021) The role m6A RNA methylation is CNS development and glioma pathogenesis. Mol Brain 14:119. https://doi.org/10.1186/s13041-021-00831-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han J, Wang J-Z, Yang X, Yu H, Zhou R, Lu H-C, Yuan W-B, Lu J-C, Zhou Z-J, Lu Q et al (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 18:110. https://doi.org/10.1186/s12943-019-1036-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H, Wu M, Liang Y, Zhu F, Zhang Y, Zhang X et al (2019) The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 38:3667–3680. https://doi.org/10.1038/s41388-019-0683-z

    Article  CAS  PubMed  Google Scholar 

  28. Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, Yuan Z, Qi D, Lin S, Min W et al (2019) N<sup>6</sup>-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 47:195–207. https://doi.org/10.1016/j.ebiom.2019.07.068

    Article  PubMed  PubMed Central  Google Scholar 

  29. He H, Wu W, Sun Z, Chai L (2019) MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m(6)A-caused stabilization of SEC62. Biochem Biophys Res Commun 517:581–587. https://doi.org/10.1016/j.bbrc.2019.07.058

    Article  CAS  PubMed  Google Scholar 

  30. Lin S, Liu J, Jiang W, Wang P, Sun C, Wang X, Chen Y, Wang H (2019) METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Warsaw Poland) 14:25–31. https://doi.org/10.1515/med-2019-0005

    Article  CAS  Google Scholar 

  31. Yang DD, Chen ZH, Yu K, Lu JH, Wu QN, Wang Y, Ju HQ, Xu RH, Liu ZX, Zeng ZL (2020) METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol 10:1–12. https://doi.org/10.3389/fonc.2020.00115

    Article  Google Scholar 

  32. Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, Dinglin X, Ma S, Li D, Wu Y et al (2019) N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer 18:181. https://doi.org/10.1186/s12943-019-1108-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wanna-Udom S, Terashima M, Lyu H, Ishimura A, Takino T, Sakari M, Tsukahara T, Suzuki T (2020) The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun 524:150–155. https://doi.org/10.1016/j.bbrc.2020.01.042

    Article  CAS  PubMed  Google Scholar 

  34. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L et al (2021) m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 14:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G et al (2019) Excessive miR-25-3p maturation via N<sup>6</sup>-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 10:1858

    Article  PubMed  Google Scholar 

  36. Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, Lu Z, Wu P, Cai B, Miao Y et al (2019) The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol-Res Pract 215:152666. https://doi.org/10.1016/j.prp.2019.152666

    Article  CAS  PubMed  Google Scholar 

  37. Du Y, Yuan Y, Xu L, Zhao F, Wang W, Xu Y, Tian X (2022) Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front Pharmacol 13:878135. https://doi.org/10.3389/fphar.2022.878135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manna S, Samal P, Basak R, Mitra A, Roy AK, Kundu R, Ahir A, Roychowdhury A, Hazra D (2022) Identification of potential natural compound inhibitors and drug like molecules against human METTL3 by docking and molecular dynamics simulation. bioRxiv 2022.06.19.496750 https://doi.org/10.1101/2022.06.19.496750

  39. Livingstone J (2001) Natural compounds in cancer therapy; 15; ISBN 0964828014

  40. Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA, Khan AM, Ijaz MU, Lima RR, Zubair M (2023) Effects of drying temperature and solvents on in vitro diabetic wound healing potential of Moringa oleifera leaf extracts. Molecules 28

  41. Rego CMA, Francisco AF, Boeno CN, Paloschi MV, Lopes JA, Silva MDS, Santana HM, Serrath SN, Rodrigues JE, Lemos CTL et al (2022) Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 12:4706. https://doi.org/10.1038/s41598-022-08735-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, Mbah JA, Mbaze LM, Sippl W, Efange SMN (2013) AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS One 8:e78085. https://doi.org/10.1371/journal.pone.0078085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller-Kuhrt L (2003) Putting nature back into drug discovery. Nat Biotechnol 21:602. https://doi.org/10.1038/nbt0603-602

    Article  CAS  PubMed  Google Scholar 

  44. de Lima AM, Siqueira AS, Möller MLS, de Souza RC, Cruz JN, Lima ARJ, da Silva RC, Aguiar DCF, da Junior JLSGV, Gonçalves EC (2022) In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J Biomol Struct Dyn 40:1064–1073. https://doi.org/10.1080/07391102.2020.1821782

    Article  CAS  PubMed  Google Scholar 

  45. Almeida VM, Dias ÊR, Souza BC, Cruz JN, Santos CBR, Leite FHA, Queiroz RF, Branco A (2022) Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J Biomol Struct Dyn 40:7574–7583. https://doi.org/10.1080/07391102.2021.1900916

    Article  CAS  PubMed  Google Scholar 

  46. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring 2. Enrichment factors in database screening. J Med Chem 47:1750

    Article  CAS  PubMed  Google Scholar 

  48. Chang MW, Lindstrom W, Olson AJ, Belew RK (2007) Analysis of HIV wild-type and mutant structures via in silico docking against diverse ligand libraries. J Chem Inf Model 47:1258–1262. https://doi.org/10.1021/ci700044s

    Article  CAS  PubMed  Google Scholar 

  49. BIOVIA (2017) D.S. Discovery Studio

  50. Diallo BN, Glenister M, Musyoka TM, Lobb K, Tastan Bishop Ö (2021) SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform 13:37. https://doi.org/10.1186/s13321-021-00514-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hatherley R, Brown DK, Musyoka TM, Penkler DL, Faya N, Lobb KA, Tastan Bishop Ö (2015) SANCDB: a South African natural compound database. J Cheminform 7:29. https://doi.org/10.1186/s13321-015-0080-8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19 _ Enhanced Reader.pdf.

  53. Houston DR, Walkinshaw MD (2013) Consensus docking: improving the reliability of docking in a virtual screening context. J Chem Inf Model 53:384–390. https://doi.org/10.1021/ci300399w

    Article  CAS  PubMed  Google Scholar 

  54. Alves MJ, Froufe HJC, Costa AT, Santos AF, Oliveira LG, Osório SRM, Abreu RMV, Pintado M, Ferreira ICFR (2014) Docking studies in target proteins involved in antibacterial action mechanisms: extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules 19:1672–1684

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chaput L, Mouawad L (2017) Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds. J Cheminform 9:37. https://doi.org/10.1186/s13321-017-0227-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gimeno A, Mestres-Truyol J, Ojeda-Montes MJ, Macip G, Saldivar-Espinoza B, Cereto-Massagué A, Pujadas G, Garcia-Vallvé S (2020) Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int J Mol Sci 21 https://doi.org/10.3390/ijms21113793

  57. Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci 11:320–328. https://doi.org/10.1007/s12539-019-00327-w

    Article  CAS  PubMed  Google Scholar 

  58. Pantsar T, Poso, A (2018) Binding affinity via docking: fact and fiction. Molecules 23 https://doi.org/10.3390/molecules23081899

  59. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54:1717–1736. https://doi.org/10.1021/ci500081m

    Article  CAS  PubMed  Google Scholar 

  60. Ortiz CLD, Completo GC, Nacario RC, Nellas RB (2019) Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): molecular docking, 3D-QSAR, and in silico ADMETox studies. Sci Rep 9:17096. https://doi.org/10.1038/s41598-019-52764-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmad S, Waheed Y, Abro A, Abbasi SW, Ismail S (2021) Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. J Mol Model 27:206. https://doi.org/10.1007/s00894-021-04816-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Issahaku AR, Mukelabai N, Agoni C, Rudrapal M, Aldosari SM, Almalki SG, Khan J (2022) Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRAS(G12D) inhibitors for cancer therapy. Sci Rep 12:17796. https://doi.org/10.1038/s41598-022-22668-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinforma Chapter 5 Unit-5.6 https://doi.org/10.1002/0471250953.bi0506s15

  64. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  65. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24:591–604. https://doi.org/10.1007/s10822-010-9349-1

    Article  CAS  PubMed  Google Scholar 

  66. Heifets A, Lilien RH (2010) LigAlign: flexible ligand-based active site alignment and analysis. J Mol Graph Model 29:93–101. https://doi.org/10.1016/j.jmgm.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  67. Sasmal S, El Khoury L, Mobley DL (2020) D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors. J Comput Aided Mol Des 34:163–177. https://doi.org/10.1007/s10822-019-00249-1

    Article  CAS  PubMed  Google Scholar 

  68. Ramírez D, Caballero J (2018) Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?. Molecules 23 https://doi.org/10.3390/molecules23051038

  69. Dalton JAR, Jackson RM (2010) Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. J Mol Biol 399:645–661. https://doi.org/10.1016/j.jmb.2010.04.047

    Article  CAS  PubMed  Google Scholar 

  70. Jaundoo R, Bohmann J, Gutierrez GE, Klimas N, Broderick G, Craddock TJA (2018) Using a consensus docking approach to predict adverse drug reactions in combination drug therapies for gulf war illness. Int J Mol Sci 19 https://doi.org/10.3390/ijms19113355

  71. Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y (2019) ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10:148–157. https://doi.org/10.1039/C8MD00472B

    Article  CAS  PubMed  Google Scholar 

  72. Rudrapal M, Issahaku AR, Agoni C, Bendale AR, Nagar A, Soliman MES, Lokwani D, Rudrapal M, Issahaku AR, Agoni C et al (2021) In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J Biomol Struct Dyn 0:1–17. https://doi.org/10.1080/07391102.2021.1944909

    Article  CAS  Google Scholar 

  73. Ren X, Shi Y-S, Zhang Y, Liu B, Zhang L-H, Peng Y-B, Zeng R (2018) Novel consensus docking strategy to improve ligand pose prediction. J Chem Inf Model 58:1662–1668. https://doi.org/10.1021/acs.jcim.8b00329

    Article  CAS  PubMed  Google Scholar 

  74. Thomas BN, Parrill AL, Baker DL (2022) Self-docking and cross-docking simulations of G protein-coupled receptor-ligand complexes: impact of ligand type and receptor activation state. J Mol Graph Model 112:108119. https://doi.org/10.1016/j.jmgm.2021.108119

    Article  CAS  PubMed  Google Scholar 

  75. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474. https://doi.org/10.1021/ci900056c

    Article  CAS  PubMed  Google Scholar 

  76. Case DA, Babin V, Berryman J, Betz RM, Cai Q, Cerutti DS, Cheatham Iii, TE, Darden TA, Duke RE, Gohlke H (2018) Amber 18.

  77. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895

    Article  CAS  PubMed  Google Scholar 

  78. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  79. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nikitin S (2014) Leap gradient algorithm.

  81. Larini L, Mannella R, Leporini D (2007) Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J Chem Phys 126:104101

    Article  CAS  PubMed  Google Scholar 

  82. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  83. Gonnet P (2007) P-SHAKE: a quadratically convergent SHAKE in O (n2). J Comput Phys 220:740–750

    Article  Google Scholar 

  84. Miller BR 3rd, McGee TDJ, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  85. Issahaku AR, Aljoundi A, Soliman MES (2022) Establishing the mutational effect on the binding susceptibility of AMG510 to KRAS switch II binding pocket: computational insights. Informatics Med Unlocked 30:100952. https://doi.org/10.1016/j.imu.2022.100952

    Article  Google Scholar 

  86. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  87. Seifert E (2014) OriginPro 9.1: Scientific data analysis and graphing software – software review. J Chem Inf Model 54:1552

    Article  CAS  PubMed  Google Scholar 

  88. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7 https://doi.org/10.1038/srep42717

  89. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Computational tools for ADMET Available online: http://crdd.osdd.net/admet.php (accessed on Dec 8, 2021).

  91. Banerjee P, Dehnbostel FO, Preissner R (2018) Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem 6:362

    Article  PubMed  PubMed Central  Google Scholar 

  92. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:53–58. https://doi.org/10.1093/nar/gku401

    Article  CAS  Google Scholar 

  93. ZLab Available online: https://www.umassmed.edu/zlab/ (accessed on Dec 20, 2021).

  94. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinforma 17:355–362. https://doi.org/10.1002/prot.340170404

    Article  CAS  Google Scholar 

  96. Zhou Y, Di B, Niu M-M (2019) Structure-Based pharmacophore design and virtual screening for novel tubulin inhibitors with potential anticancer activity. Molecules 24 https://doi.org/10.3390/molecules24173181

  97. Cole JC, Nissink JWM, Taylor R, Shoichet B, Alvarez J (2005) Virtual screening in drug discovery

  98. Westermaier Y, Ruiz-Carmona S, Theret I, Perron-Sierra F, Poissonnet G, Dacquet C, Boutin JA, Ducrot P, Barril X (2017) Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR. J Comput Aided Mol Des 31:755–775. https://doi.org/10.1007/s10822-017-0040-7

    Article  CAS  PubMed  Google Scholar 

  99. Wang C, Greene D, Xiao L, Qi R, Luo R (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 4 https://doi.org/10.3389/fmolb.2017.00087

  100. Chen J (2017) Clarifying binding difference of ATP and ADP to extracellular signal-regulated kinase 2 by using molecular dynamics simulations. Chem Biol Drug Des 89:548–558. https://doi.org/10.1111/cbdd.12877

    Article  CAS  PubMed  Google Scholar 

  101. Czeleń P (2016) Molecular dynamics study on inhibition mechanism of CDK-2 and GSK-3β by CHEMBL272026 molecule. Struct Chem 27:1807–1818. https://doi.org/10.1007/s11224-016-0803-0

    Article  CAS  Google Scholar 

  102. Li X, Wang X, Tian Z, Zhao H, Liang D, Li W, Qiu Y, Lu S (2014) Structural basis of valmerins as dual inhibitors of GSK3β/CDK5. J Mol Model 20:2407. https://doi.org/10.1007/s00894-014-2407-1

    Article  CAS  PubMed  Google Scholar 

  103. Kong X, Pan P, Li D, Tian S, Li Y, Hou T (2015) Importance of protein flexibility in ranking inhibitor affinities: modeling the binding mechanisms of piperidine carboxamides as Type I1/2 ALK inhibitors. Phys Chem Chem Phys 17:6098–6113. https://doi.org/10.1039/C4CP05440G

    Article  CAS  PubMed  Google Scholar 

  104. Wang X, Pan P, Li Y, Li D, Hou T (2014) Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. Mol Biosyst 10:1196–1210. https://doi.org/10.1039/c4mb00013g

    Article  CAS  PubMed  Google Scholar 

  105. Bian X, Dong W, Zhao Y, Sun R, Kong W, Li Y (2014) Definition of the binding mode of phosphoinositide 3-kinase α-selective inhibitor A-66S through molecular dynamics simulation. J Mol Model 20:2166. https://doi.org/10.1007/s00894-014-2166-z

    Article  CAS  PubMed  Google Scholar 

  106. Pendota SC, Aderogba MA, Ndhlala AR, Van Staden J (2013) Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds. J Ethnopharmacol 148:515–520. https://doi.org/10.1016/j.jep.2013.04.047

    Article  CAS  PubMed  Google Scholar 

  107. Pudumo J, Chaudhary SK, Chen W, Viljoen A, Vermaak I, Veale CGL (2018) HPTLC fingerprinting of Croton gratissimus leaf extract with preparative HPLC-MS-isolated marker compounds. South African J Bot 114:32–36. https://doi.org/10.1016/j.sajb.2017.10.004

    Article  CAS  Google Scholar 

  108. Ayers S, Zink DL, Mohn K, Powell JS, Brown CM, Murphy T, Brand R, Pretorius S, Stevenson D, Thompson D et al (2008) Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 69:541–545. https://doi.org/10.1016/j.phytochem.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  109. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 10:e0119264. https://doi.org/10.1371/journal.pone.0119264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ali SA, Hassan MI, Islam A, Ahmad F (2014) A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci 15:456–476. https://doi.org/10.2174/1389203715666140327114232

    Article  CAS  PubMed  Google Scholar 

  111. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63:306–317. https://doi.org/10.1016/j.molcel.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Iyer LM, Zhang D, Aravind L (2016) Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays 38:27–40. https://doi.org/10.1002/bies.201500104

    Article  CAS  PubMed  Google Scholar 

  113. Bujnicki JM, Feder M, Radlinska M, Blumenthal RM (2002) Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol 55:431–444. https://doi.org/10.1007/s00239-002-2339-8

    Article  CAS  PubMed  Google Scholar 

  114. Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  116. Omran Z, Rauch C (2014) Acid-mediated Lipinski’s second rule: application to drug design and targeting in cancer. Eur Biophys J 43:199–206. https://doi.org/10.1007/s00249-014-0953-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Veber D, Johnson S, Cheng H-Y, Smith B, Ward K, Kopple K (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  118. Lu J, Crimin K, Goodwin JT, Crivori P, Orrenius C, Xing L, Tandler PJ, Vidmar TJ, Amore BM, Wilson AGE et al (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J Med Chem 47(24):6104–6107

    Article  CAS  PubMed  Google Scholar 

  119. Vallianatou T, Giaginis C, Tsantili-Kakoulidou A (2015) The impact of physicochemical and molecular properties in drug design: navigation in the “drug-like” chemical space. Adv Exp Med Biol 822:187–194. https://doi.org/10.1007/978-3-319-08927-0_21

    Article  CAS  PubMed  Google Scholar 

  120. Issahaku AR, Mukelabai N, Agoni C, Rudrapal M, Aldosari SM, Almalki SG, Khan J (2022) Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Sci Rep 12:17796. https://doi.org/10.1038/s41598-022-22668-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, Dahlke JR, Fell JB, Fischer JP, Gunn RJ et al (2021) Identi fi cation of MRTX1133, a noncovalent, potent, and selective KRAS

  122. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. https://doi.org/10.1016/s1056-8719(00)00107-6

    Article  CAS  PubMed  Google Scholar 

  123. Wang J, Hou T (2011) Recent advances on aqueous solubility prediction. Comb Chem High throughput Screen 14 5:328–338

    Article  Google Scholar 

  124. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. https://doi.org/10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

  125. Prasanna S, Doerksen RJ (2009) Topological polar surface area: a useful descriptor in 2D-QSAR. Curr Med Chem 16:21–41. https://doi.org/10.2174/092986709787002817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Daga PR, Bolger MB, Haworth IS, Clark RD, Martin EJ (2018) Physiologically based pharmacokinetic modeling in lead optimization. 2. Rational bioavailability design by global sensitivity analysis to identify properties affecting bioavailability. Mol Pharm 15 3:831–839

    Article  Google Scholar 

  127. Ivanović V, Rančić M, Arsić B, Pavlović A (2020) Lipinski’s rule of five, famous extensions and famous exceptions. Pop Sci Artic 3:171–177

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support through Researcher Supporting Project (project no. RSPD-2023/R672), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Abdul Rashid Issahaku conceptualized and designed the study. Samukelisiwe Minenhle Mncube, Clement Agoni, and Samuel K. Kwofie interpreted data. Mohamed Issa Alahmdi, Nader E. Abo-Dya, Peter A. Sidhom, and Ahmed M. Tawfeek prepared all figures in the manuscript. Mahmoud A. A. Ibrahim, Namutula Mukelabai, and Opeyemi Soremekun wrote the manuscript. Mahmoud E.S. Soliman supervised the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Ethical approval

This is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 5.66 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issahaku, A.R., Mncube, S.M., Agoni, C. et al. Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL3 in cancer treatment from natural compounds. J Mol Model 29, 122 (2023). https://doi.org/10.1007/s00894-023-05516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05516-5

Keywords

Navigation