Skip to main content

The Impact of Physicochemical and Molecular Properties in Drug Design: Navigation in the “Drug-Like” Chemical Space

  • Conference paper
  • First Online:
GeNeDis 2014

Abstract

Physicochemical and molecular properties influence both pharmacokinetic and pharmacodynamic process, as well as drug safety, often in a conflicting way. In this aspect the current trend in drug discovery is to consider ADME (T) properties in parallel with target affinity. The concept of “drug-likeness” defines acceptable boundaries of fundamental properties formulated as simple rules of thumb, in order to aid the medicinal chemist to prioritize drug candidates. Special attention is given to lipophilicity and molecular weight, since there is a tendency for those parameters to increase in regard to complex compounds generated by new technologies, with potential consequences in bioavailability, while high lipophilicity is also associated with undesired effects. Such rules have the advantage to be very simple and are easy to interpret; however their drawback is that they do not take into consideration uncertainties in measurements and calculations as well as the receptor requirements. The case of PPARs, a nuclear receptor family, is discussed in detail in regard to the chemical space covered by the ligands, focusing on the high demands of the ligand binding domain in both lipophilicity and molecular size. Such paradigms indicate that it would be more appropriate to adapt drug-like properties according to specific drug discovery projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansch C, Fujita T (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  2. Hansch C (1969) A quantitative approach to biological structure-activity relationships. Acc Chem Res 2:232–239

    Article  CAS  Google Scholar 

  3. Hansch C, Leo A (eds) (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  4. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. In: Mannhold R, Kubinyi H, Folkers G (eds) Methods and principles in medicinal chemistry. Wiley, Weinheim

    Google Scholar 

  5. van de Waterbeemd H, Smith DA, Beaumont K, Walker DK (2001) Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 244:1313–1333

    Article  Google Scholar 

  6. Gaviraghi G, Barnaby RJ, Pellegatti M (2001) Pharmacokinetic challenges in lead optimization. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research. Verlag Helvetica Chimica Acta: Zürich and Wiley – VCH, Weinheim

    Google Scholar 

  7. Yusof Y, Segall MD (2013) Considering the impact drug-like properties have on the chance of success. Drug Disc Today 18:659–666

    Article  CAS  Google Scholar 

  8. van de Waterbeemd H, Testa B (1987) The parametrization of lipophilicity and other structural properties in drug design. In: Testa B (ed) Advances in drug research, vol 16. Academic, New York

    Google Scholar 

  9. Augustijns P, Wuyts B, Hens B, Annaert P, Butler J, Brouwers J (2013) A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption. Eur J Pharm Sci. doi: 10.1016/j.ejps.2013.08.027 [Epub ahead of print]

  10. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen ML, Lee VH, Hussain AS (2002) Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 19:921–925

    Article  CAS  PubMed  Google Scholar 

  11. Pagliara A, Carrupt PA, Caron G, Gaillard P, Testa B (1997) Lipophilicity profiles of ampholytes. Chem Rev 97:3385–3400

    Article  CAS  PubMed  Google Scholar 

  12. Howard PH, Meylan W (2000) PHYSPROP database. Syracuse Research Corp, Syracuse

    Google Scholar 

  13. Physicochemical Parameter Database, Medicinal Chemistry Project, Pomona College, Claremont, CA, USA. www.biobyte.com/bb/prod/cqsar.html

  14. Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of logP methods on more than 96,000 compounds. J Pharm Sci 98:861–893

    Article  CAS  PubMed  Google Scholar 

  15. Hansch C, Bjorkroth JP, Leo A (1987) Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 76:663–687

    Article  CAS  PubMed  Google Scholar 

  16. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  17. Oprea T (2002) Current trends in lead discovery: are we looking for the appropriate properties? J Comput Aided Mol Des 16:325–334

    Article  CAS  PubMed  Google Scholar 

  18. Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4:445–451

    Article  CAS  PubMed  Google Scholar 

  19. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  20. Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18:4872–4875

    Article  CAS  PubMed  Google Scholar 

  21. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553

    Article  PubMed Central  PubMed  Google Scholar 

  22. Congreve M, Carr R, Murray C, Jhoti H (2003) A “Rule of Three” for fragment-based lead discovery. Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  23. Abad-Zapatero C (2007) Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov 2:469–488

    Article  CAS  PubMed  Google Scholar 

  24. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890

    Article  CAS  PubMed  Google Scholar 

  25. Keserü GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8:203–212

    Article  PubMed  Google Scholar 

  26. Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  27. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2009) Structural basis for the design of PPAR-gamma ligands: a survey on quantitative structure- activity relationships. Mini Rev Med Chem 9:1075–1083

    Article  CAS  PubMed  Google Scholar 

  28. Ebdrup S, Pettersson I, Rasmussen HB, Deussen H, Jensen AF, Mortensen SB, Fleckner J, Pridal L, Nygaard L, Sauerberg P (2003) Synthesis and biological and structural characterzation of the dual-acting peroxisome proliferator-activated receptor α/γ agonist ragaglitazar. J Med Chem 46:1306–1317

    Article  CAS  PubMed  Google Scholar 

  29. Giaginis C, Zira A, Theocharis S, Tsantili-Kakoulidou A (2008) Property distribution in the chemical space of PPAR-γ agonists: Evaluation of drug-like characteristics. Rev Clin Pharmacol Pharmacokin Intern Ed 22:366–368

    CAS  Google Scholar 

  30. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2007) A consideration of PPAR-γ ligands in respect to lipophilicity: current trends and perspectives. Expert Opin Investig Drugs 16:413–417

    Article  CAS  PubMed  Google Scholar 

  31. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2008) Application of multivariate data analysis for modeling receptor binding and gene transactivation of tyrosine-based PPAR-γ ligands. Chem Biol Drug Des 72:257–264

    Article  CAS  PubMed  Google Scholar 

  32. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2009) A QSAR study on indole-based PPAR-γ agonists with respect to receptor binding and transactivation data. QSAR Comb Sci 28:802–805

    Article  CAS  Google Scholar 

  33. Vallianatou T, Lambrinidis G, Giaginis C, Mikros E, Tsantili- Kakoulidou A (2013) Analysis of PPAR-α/γ activity by combining 2-D QSAR and molecular simulation. Mol Inf 32:431–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tsantili-Kakoulidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vallianatou, T., Giaginis, C., Tsantili-Kakoulidou, A. (2015). The Impact of Physicochemical and Molecular Properties in Drug Design: Navigation in the “Drug-Like” Chemical Space. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-08927-0_21

Download citation

Publish with us

Policies and ethics