Skip to main content

Advertisement

Log in

Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural and antioxidant activity of two flavonols, namely, Fisetin and Robinetin, have been investigated employing the density functional theory (DFT) using B3LYP functional and 6–311++G (d, p) basis set. The calculations were performed in the gas phase and under the solvent effect of water, dimethylsulfoxide (DMSO), methanol, and benzene. The hydrogen-atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were investigated to rationalize the radical scavenging capacities and to identify the favored antioxidant mechanism. Hence, the bond dissociation enthalpies (BDE) ionization potential (IP), IE, proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) related to each mechanism were reported and discussed in function of the solvent effect. For both flavonols, the results showed that 4′-OH hydroxyl is the preferred active site following the trend 4′-OH > 3′-OH > 3-OH > (5′-OH) > 7-OH. Besides, the HAT mechanism is energetically the most favored pathway. The energetically favored solvents follow the trends water > DMSO > benzene > methanol and benzene > DMSO > methanol > water, for Fisetin and Robinetin, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Rusznyák ST, Szent-Györgyi A (1936) Vitamin P: Flavonols as vitamins. Nature 138:27–27. https://doi.org/10.1038/138027a0

    Article  Google Scholar 

  2. Mukohata Y, Nakabayashi S, Higashida M (1978) Quercetin, an energy transfer inhibitor in photophosphorylation. FEBS Lett 85:215–218

    Article  CAS  Google Scholar 

  3. Lee E-R, Kang G-H, Cho S-G (2007) Effect of flavonoids on human health: old subjects but new challenges. Recent Pat Biotechnol 1:139–150

    Article  CAS  Google Scholar 

  4. Hollman PCH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  Google Scholar 

  5. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278. https://doi.org/10.4161/oxim.2.5.9498

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wolfe KL, Liu RH (2008) Structure−activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem 56:8404–8411

    Article  CAS  Google Scholar 

  7. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907

    Article  CAS  Google Scholar 

  8. Wolfe KL, Kang X, He X et al (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418–8426. https://doi.org/10.1021/jf801381y

    Article  CAS  PubMed  Google Scholar 

  9. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S-3485S. https://doi.org/10.1093/jn/134.12.3479S

    Article  CAS  PubMed  Google Scholar 

  10. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. https://doi.org/10.1016/s0031-9422(00)00235-1

    Article  CAS  PubMed  Google Scholar 

  11. de Vrie JHM, de Vrie JHM, Karin Janssen PLT et al (1997) Consumption of quercetin and kaempferol in free-living subjects eating a variety of diets. Cancer Lett 114:141–144

    Article  Google Scholar 

  12. Mullie P, Clarys P, Deriemaeker P, Hebbelinck M (2007) Estimation of daily human intake of food flavonoids. Plant Foods Hum Nutr 62:93–98

    Article  CAS  Google Scholar 

  13. Jun S, Shin S, Joung H (2016) Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr 115:480–489

    Article  CAS  Google Scholar 

  14. Teixeira S, Siquet C, Alves C et al (2005) Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Med 39:1099–1108. https://doi.org/10.1016/j.freeradbiomed.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  15. Bubols GB, da Vianna DR, Medina-Remon A et al (2013) The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem 13:318–334. https://doi.org/10.2174/138955713804999775

    Article  CAS  PubMed  Google Scholar 

  16. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12. https://doi.org/10.4103/0973-7847.79093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biol Med 37:287–303

    Article  CAS  Google Scholar 

  18. Plate AYA (2006) Cruciferous vegetables, secondary metabolites of glucosinolates, and colon cancer risk in rats. University of Minnesota

  19. Mekhancha-Dahel CC (2008) Anthropométrie nutritionnelle et santé des sujets jeunes: données actuelles dans le monde et en Algérie. Editions Dar El Gharb

  20. Kuntz S, Wenzel U, Daniel H (1999) Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr 38:133–142. https://doi.org/10.1007/s003940050054

    Article  CAS  PubMed  Google Scholar 

  21. Huang YT, Hwang JJ, Lee PP et al (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010. https://doi.org/10.1038/sj.bjp.0702879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  23. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265. https://doi.org/10.3390/molecules191016240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mantas A, Deretey E, Ferretti FH et al (2000) Structural analysis of flavonoids with anti-HIV activity. Theochem 504:171–179. https://doi.org/10.1016/s0166-1280(00)00362-6

    Article  CAS  Google Scholar 

  25. Wu J-H, Wang X-H, Yi Y-H, Lee K-H (2003) Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13:1813–1815. https://doi.org/10.1016/s0960-894x(03)00197-5

    Article  CAS  PubMed  Google Scholar 

  26. Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–162

    Article  CAS  Google Scholar 

  27. Bouzid K, Toumi Benali F, Chadli R, Bouzouina M, Bouzid A, Benchohra A, Dif MM (2014) Extraction, identification and quantitative HPLC analysis of flavonoids from fruit extracts of Arbutus unedo L. from Tiaret area (Western Algeria). Eur J Mol Biotechnol 6:160–169

  28. Pahari B, Chakraborty S, Chaudhuri S et al (2012) Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lipids 165:488–496. https://doi.org/10.1016/j.chemphyslip.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  29. Kim JY, Jeon YK, Jeon W, Nam MJ (2010) Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 48:2259–2264. https://doi.org/10.1016/j.fct.2010.05.058

    Article  CAS  PubMed  Google Scholar 

  30. Park H-H, Lee S, Oh J-M et al (2007) Anti-inflammatory activity of Fisetin in human mast cells (HMC-1). Pharmacol Res 55:31–37. https://doi.org/10.1016/j.phrs.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  31. Brinkworth RI, Stoermer MJ, Fairlie DP (1992) Flavones are inhibitors of HIV-1 proteinase. Biochem Biophys Res Commun 188:631–637. https://doi.org/10.1016/0006-291x(92)91103-w

    Article  CAS  PubMed  Google Scholar 

  32. Maher P, Akaishi T, Abe K (2006) Flavonoid Fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103:16568–16573. https://doi.org/10.1073/pnas.0607822103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hillis WE (1996) Formation of Robinetin crystals in vessels of Intsia species. IAWA J 17:405–419

    Article  Google Scholar 

  34. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  35. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523. https://doi.org/10.1016/j.fitote.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  36. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18. https://doi.org/10.1111/j.1749-6632.1999.tb07814.x

    Article  CAS  PubMed  Google Scholar 

  38. Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidants therapy (2021) https://paperpile.com/app/p/a6f0664f-d5cb-07a2-ab0c-817300092165. Accessed 17 Nov 2021

  39. Marković ZS, Mentus SV, Dimitrić Marković JM (2009) Electrochemical and density functional theory study on the reactivity of Fisetin and its radicals: implications on in vitro antioxidant activity. J Phys Chem A 113:14170–14179

    Article  Google Scholar 

  40. Maciel EN, Soares IN, da Silva SC, de Souza GLC (2019) A computational study on the reaction between Fisetin and 2,2-diphenyl-1-picrylhydrazyl (DPPH). J Mol Model 25:103. https://doi.org/10.1007/s00894-019-3969-8

    Article  CAS  PubMed  Google Scholar 

  41. Bayat A, Fattahi A (2017) A quantum chemical study on the OH radical quenching by natural antioxidant Fisetin. J Phys Org Chem 30:e3692. https://doi.org/10.1002/poc.3692

    Article  CAS  Google Scholar 

  42. Dimitrić Marković JM, Amić D, Lučić B, Marković ZS (2014) Oxidation of kaempferol and its iron(III) complex by DPPH radicals: spectroscopic and theoretical study. Monatsh Chem 145:557–563. https://doi.org/10.1007/s00706-013-1135-z

    Article  CAS  Google Scholar 

  43. Spiegel M, Andruniów T, Sroka Z (2020) Flavones’ and flavonols’ antiradical structure-activity relationship-a quantum chemical study. Antioxidants (Basel) 9. https://doi.org/10.3390/antiox9060461

  44. Dimitrić Marković JM, Marković ZS, Brdarić TP, Filipović ND (2011) Comparative spectroscopic and mechanistic study of chelation properties of Fisetin with iron in aqueous buffered solutions. Implications on in vitro antioxidant activity. Dalton Trans 40:4560–4571. https://doi.org/10.1039/c0dt01834a

    Article  CAS  PubMed  Google Scholar 

  45. Kakiuchi T, Mukai K, Ohara K, Nagaoka S-I (2009) Tunneling effect in antioxidant reaction of flavonoid. Bull Chem Soc Jpn 82:216–218

    Article  CAS  Google Scholar 

  46. Naeimi AF, Alizadeh M (2017) Antioxidant properties of the flavonoid Fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol 70:34–44. https://doi.org/10.1016/j.tifs.2017.10.003

    Article  CAS  Google Scholar 

  47. Lučić B, Stepanić V, Plavšić D et al (2014) Correlation between 13C NMR chemical shifts and antiradical activity of flavonoids. Monatsh Chem 145:457–463. https://doi.org/10.1007/s00706-013-1130-4

    Article  CAS  Google Scholar 

  48. Manrique-de-la-Cuba MF, Gamero-Begazo P, Valencia DE et al (2019) Theoretical study of the antioxidant capacity of the flavonoids present in the Annona muricata (Soursop) leaves. J Mol Model 25:200. https://doi.org/10.1007/s00894-019-4083-7

    Article  CAS  PubMed  Google Scholar 

  49. Sadasivam K, Jayaprakasam R, Kumaresan R (2012) A dft study on the role of different oh groups in the radical scavenging process. J Theor Comput Chem 11:871–893. https://doi.org/10.1142/s0219633612500599

    Article  CAS  Google Scholar 

  50. Hossen J, Ali MA, Reza S (2021) Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach. J Mol Model 27:173. https://doi.org/10.1007/s00894-021-04795-0

    Article  CAS  PubMed  Google Scholar 

  51. Mendes RA, E Silva BLS, Takeara R et al (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101. https://doi.org/10.1007/s00894-018-3632-9

    Article  CAS  PubMed  Google Scholar 

  52. Zheng Y-Z, Deng G, Liang Q et al (2017) Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep 7:7543. https://doi.org/10.1038/s41598-017-08024-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  55. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  PubMed  Google Scholar 

  56. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  57. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. https://doi.org/10.1021/ar700111a

    Article  CAS  PubMed  Google Scholar 

  58. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  59. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  60. gaussian 09, Revision d. 01, Gaussian (2021) https://paperpile.com/app/p/0de7953f-eccc-0633-9342-09859bebe6b9. Accessed 17 Nov 2021

  61. Payán-Gómez SA, Flores-Holguín N, Pérez-Hernández A et al (2010) Computational molecular characterization of the flavonoid rutin. Chem Cent J 4:12. https://doi.org/10.1186/1752-153X-4-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Souza GLC, Peterson KA (2021) Benchmarking antioxidant-related properties for gallic acid through the use of DFT, MP2, CCSD, and CCSD(T) approaches. J Phys Chem A 125:198–208. https://doi.org/10.1021/acs.jpca.0c09116

    Article  CAS  PubMed  Google Scholar 

  63. Santos JLF, Kauffmann AC, da Silva SC et al (2020) Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model 26:233. https://doi.org/10.1007/s00894-020-04469-3

    Article  CAS  PubMed  Google Scholar 

  64. Mendes RA, Almeida SKC, Soares IN et al (2019) Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4-O-α-L-rhamnopyranoside through a computational study. J Mol Model 25:89. https://doi.org/10.1007/s00894-019-3959-x

    Article  CAS  PubMed  Google Scholar 

  65. Maciel EN, Almeida SKC, da Silva SC, de Souza GLC (2018) Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 24:218. https://doi.org/10.1007/s00894-018-3745-1

    Article  CAS  PubMed  Google Scholar 

  66. (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. https://doi.org/10.1016/0009-2614(96)00349-1

  67. Miertus̃ S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245. https://doi.org/10.1016/0301-0104(82)85072-6

    Article  Google Scholar 

  68. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  69. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221. https://doi.org/10.1063/1.474671

    Article  CAS  Google Scholar 

  70. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  71. Kreilick RW, Weissman SI (1966) Hydrogen atom transfer between free radicals and their diamagnetic precursors. J Am Chem Soc 88:2645–2652

    Article  CAS  Google Scholar 

  72. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543. https://doi.org/10.1006/abbi.1993.1074

    Article  CAS  PubMed  Google Scholar 

  73. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/s0031-8914(34)90011-2

    Article  Google Scholar 

  74. Messaadia L, Bekkar Y, Benamira M, Lahmar H (2020) Predicting the antioxidant activity of some flavonoids of Arbutus plant: a theoretical approach. Chemical Physics Impact 1:100007. https://doi.org/10.1016/j.chphi.2020.100007

    Article  Google Scholar 

  75. Bitew M, Desalegn T, Demissie TB et al (2021) Pharmacokinetics and drug-likeness of antidiabetic flavonoids: molecular docking and DFT study. PLoS ONE 16:e0260853. https://doi.org/10.1371/journal.pone.0260853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marković S, Tošović J (2015) Application of time-dependent density functional and natural bond orbital theories to the UV-vis absorption spectra of some phenolic compounds. J Phys Chem A 119:9352–9362. https://doi.org/10.1021/acs.jpca.5b05129

    Article  CAS  PubMed  Google Scholar 

  77. Seyoum A, Asres K, El-Fiky FK (2006) Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 67:2058–2070. https://doi.org/10.1016/j.phytochem.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  78. Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216. https://doi.org/10.1007/s00214-003-0544-1

    Article  CAS  Google Scholar 

  79. Sadasivam K, Kumaresan R (2011) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds–a DFT study. Spectrochim Acta A Mol Biomol Spectrosc 79:282–293. https://doi.org/10.1016/j.saa.2011.02.042

    Article  CAS  PubMed  Google Scholar 

  80. Sadasivam K, Kumaresan R (2011) A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds. Mol Phys 109:839–852. https://doi.org/10.1080/00268976.2011.556576

    Article  CAS  Google Scholar 

  81. Thong NM, Vo QV, Huyen TL et al (2019) Theoretical Study for exploring the diglycoside substituent effect on the antioxidative capability of isorhamnetin extracted from. ACS Omega 4:14996–15003. https://doi.org/10.1021/acsomega.9b01780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dias MM, Machado NFL, Marques MPM (2011) Dietary chromones as antioxidant agents–the structural variable. Food Funct 2:595–602. https://doi.org/10.1039/c1fo10098j

    Article  CAS  PubMed  Google Scholar 

  83. Vagánek A, Rimarčík J, Dropková K et al (2014) Reaction enthalpies of OH bonds splitting-off in flavonoids: the role of non-polar and polar solvent. Comput Theor Chem 1050:31–38

    Article  Google Scholar 

  84. Amić D, Lucić B (2010) Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Bioorg Med Chem 18:28–35. https://doi.org/10.1016/j.bmc.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  85. Alvareda E, Denis PA, Iribarne F, Paulino M (2016) Bond dissociation energies and enthalpies of formation of flavonoids: a G4 and M06–2X investigation. Comput Theor Chem 1091:18–23. https://doi.org/10.1016/j.comptc.2016.06.021

    Article  CAS  Google Scholar 

  86. Parkinson CJ, Mayer PM, Radom L (1999) An assessment of theoretical procedures for the calculation of reliable radical stabilization energies †‡. J Chem Soc Perkin Trans 2:2305–2313

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ahmed Abousafat and Dr. Durre Khalil for their technical English assistance. The calculations were performed thanks to the HPC resources of “Unité de Calcul intensif” of the University Frères Mentouri Constantine 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The first draft of the manuscript was written by Rafik Menacer and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The credit author statement is as follows:

Rafik Menacer: writing—original draft, conceptualization, methodology, resources, data curation, software, investigation, formal analysis, visualization, validation, writing—review and editing. Rekkab Seifeddine: resources, data curation, software, investigation, visualization. Zahia Kabouche: supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Rafik Menacer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The antioxidant activity of Fisetin and Robinetin compounds was theoretically rationalized under gas phase and solvent effect of water, dimethylsulfoxide (DMSO), methanol, and benzene at B3LYP/6-311++G(d, p) level of theory.

• The fundamental mechanisms related to the antioxidant activity: hydrogen-atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and Sequential Proton Loss Electron Transfer (SPLET), were investigated. It was found that the HAT mechanism is thermodynamically the most favored pathway.

• The favorable active hydroxyls associated with the antioxidant activity follow the trend 4′-OH > 3′-OH > 3-OH > (5′-OH) > 7-OH.

• The energetically favored solvents follow the trends water > DMSO > benzene > methanol and benzene > DMSO > methanol > water for Fisetin and Robinetin, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menacer, R., Rekkab, S. & Kabouche, Z. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study. J Mol Model 28, 240 (2022). https://doi.org/10.1007/s00894-022-05223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05223-7

Keywords

Navigation