Skip to main content
Log in

Three types of noncovalent interactions studied between pyrazine and XF

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three types noncovalent interactions (type I, II and III) between pyrazine (C4H4N2) and XF (X = F, Cl, Br, and I) have been discovered at the MP2/aug-cc-pVTZ level. TypeI is σ-hole interaction between the positive site on the halogen X of XF and the negative site on one of the pyrazine nitrogens. Type II is counterintuitive σ-hole interaction driven by polarization between the positive site on the halogen X of XF and a portion of the pyrazine ring. Type III is an interaction between the lateral regions of the halogen X of XF and the position of the pyrazine ring. Through comparing the calculated interaction energy, we can know that the type II and type III interactions are weaker than the corresponding type I interactions, and type III interactions are weaker than the corresponding type II interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the type I (σ-hole) interactions while the type III interactions are mainly dispersion energy. For the type II (counterintuitive σ-hole) interactions in C4H4N2-XF (X = F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF (X = Br and I) complexes, the electrostatic term, induction and dispersion play equally important role in the total attractive interaction. NBO analysis, AIM theory, and conceptual DFT are also being utilized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Yes.

Code availability

Not applicable.

References

  1. Otte F, Kleinheider UJ, Hiller W, Wang R, Englert U, Strohmann C (2021) J Am Chem Soc 143(11):4133–4137

    Article  CAS  PubMed  Google Scholar 

  2. Wolf ME, Zhang B, Turney J, Schaefer HF (2019) Phys Chem Chem Phys 21:6160–6170

    Article  CAS  PubMed  Google Scholar 

  3. Kellett CW, Kennepohl P, Berlinguette CP (2020) Nat Commun 11:1–8

    Article  Google Scholar 

  4. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  PubMed  Google Scholar 

  5. Metrangolo PC, Milani R, Pilati T, PrIImagi A, Resnati G, Terraneo G (2016) Chem Rev 116(4):2478–2601

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhu HY, Wu JY, Dai GL (2020) J Mol Model 26:333

    Article  CAS  PubMed  Google Scholar 

  7. Hohenstein EG, Duan J, Sherrill CD (2011) J Am Chem Soc 133:13244–13247

    Article  CAS  PubMed  Google Scholar 

  8. Zhou FX, Liu Y, Wang ZX, Lu T, Yang QY, Zheng BS (2019) Phys Chem Chem Phys 21(28):15310–15318

    Article  CAS  PubMed  Google Scholar 

  9. Wheeler SE (2011) J Am Chem Soc 133:10262–10274

    Article  CAS  PubMed  Google Scholar 

  10. Holthoff JM, Engelage E, Weiss R, Huber SM (2020) Angew Chem Int Ed Engl 59(27):11150–11157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolá M, Hosta J, Hobza P (2015) Phys Chem Chem Phys 17(35):23279

    Article  Google Scholar 

  12. Trnka J, Sedlak R, Kolář M, Hobza P (2013) J Phys Chem A 117(20):4331–4337

    Article  CAS  PubMed  Google Scholar 

  13. Grabowski SJ (2012) J Phys Chem A 116(7):1838–1845

    Article  CAS  PubMed  Google Scholar 

  14. Forni A, Pieraccini S, Franchini D, Sironi M (2016) J Phys Chem A 120(45):9071–9080

    Article  CAS  PubMed  Google Scholar 

  15. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  16. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  17. Murray JS, Shields ZP, Seybold PG, Politzer P (2015) J Comput Sci 10:209–216

    Article  Google Scholar 

  18. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155–163

    Article  CAS  PubMed  Google Scholar 

  19. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  20. Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52

    Article  PubMed  Google Scholar 

  21. Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076

    Article  CAS  PubMed  Google Scholar 

  22. Murray JS, Politzer P (2021) Chem Phys Chem 22:1201

    Article  CAS  PubMed  Google Scholar 

  23. Murray JS, Shields ZP, Seyboldc PG, Politzer P (2015) J Comput Sci 10:209

    Article  Google Scholar 

  24. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  25. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883

    Article  CAS  PubMed  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, revision B03. Gaussian Inc, Wallingford

    Google Scholar 

  27. Boys SF (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  28. Stanton JF (1997) Chem Phy Lett 281:130–134

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold FA (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  30. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  31. Geerlings P, Deproft F, Langenaeker W (2003) Chem Rev 103:1793–1983

    Article  CAS  PubMed  Google Scholar 

  32. Deproft F, Geerlings P (2001) Chem ReV 101:1451–1464

    Article  CAS  Google Scholar 

  33. Liu SB (2015) J Phys Chem A 119(12):3107–3111

    Article  CAS  PubMed  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  35. Keith TA (2019) AIMAll, version 19.10.12. aim.tkgristmill.com

  36. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  37. Hohenstein EG, Sherrill CD (2010) J Chem Phys 133:014101–0141012

    Article  PubMed  Google Scholar 

  38. Bukowski R, Cencek W, Jankowski P, Jeziorski B, Jeziorska M, Kucharski SA, Misquitta AJ, Moszynski R, Patkowski K, Rybak S, Szalewicz K, Williams HL, Wormer PES (2016) SAPT2016: An ab initio program for many-body symmetry adapted perturbation theory calculations of intermolecular interaction energies. Sequential and parallel versions. University of Delaware, Newark; University of Warsaw, Warsaw

    Google Scholar 

  39. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  40. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  41. Amezaga NJM, Pamies SC, Peruchena NM, Sosa GL (2010) J Phys Chem A 114:552–562

    Article  PubMed  Google Scholar 

  42. Syzgantseva OA, Tognetti V, Joubert L (2013) J Phys Chem A 117:8969–8980

    Article  CAS  PubMed  Google Scholar 

  43. Bader RFW, Essen H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  44. Geerlings P, Proft FD (2008) Phys Chem Chem Phys 10:3028–3042

    Article  CAS  PubMed  Google Scholar 

  45. Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627

    Article  Google Scholar 

  46. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

  47. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  48. Matczak P (2017) Mol Phys 115:364–378

    Article  CAS  Google Scholar 

  49. Stasyuk OA, Sedlak R, Guerra CF, Hobza P (2018) J Chem Theory Comput 14(7):3440–3450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the calculations described in this study are based on Scgrid of Supercomputing Center of Chinese Academy of Sciences.

Funding

This work was supported by the National Natural Science Foundation of China (Contract no. 21203135).

Author information

Authors and Affiliations

Authors

Contributions

Junyong Wu: investigation and writing—original draft. Hua Yan: formal analysis and data curation. Hao Chen: visualization. Xianyan Jin: methodology and supervision. Aiguo Zhong: writing—review and editing. Zhaoxu Wang: methodology, software, writing—review and editing. Guoliang Dai: funding acquisition, methodology, writing—review and editing.

Corresponding authors

Correspondence to Junyong Wu or Zhaoxu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yan, H., Chen, H. et al. Three types of noncovalent interactions studied between pyrazine and XF. J Mol Model 28, 15 (2022). https://doi.org/10.1007/s00894-021-05012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05012-8

Keywords

Navigation