Skip to main content

Advertisement

Log in

Design and properties of a new family of wing-like and propeller-like multi-tetrazole molecules as potential high-energy density compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) methods were employed to design a new family of wing-like and propeller-like multi-tetrazole molecules based on the combination of N-center multi-tetrazole and various energetic groups. The optimized geometry, electronic properties, and thermodynamics were calculated for investigating the molecular stability and chemical reactivity. Their energetic parameters including density, heats of formation, detonation properties, and impact sensitivity were extensively evaluated, and the effects of energetic groups were investigated as well. These newly designed wing-like and propeller-like multi-tetrazole molecules exhibit acceptable oxygen balance, moderate impact sensitivities, high density, excellent heats of formation, and good detonation performance. Especially, B3, B4, B5, and B6 are very helpful for enhancing their detonation performance (D ≥ 9500 m·s−1, P ≥ 41 GPa) are promising candidates for new environmentally friendly HEDMs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S, Pang S (2013) 3D energetic metal-organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed Engl 52(52):14031–14035

    Article  CAS  Google Scholar 

  2. He P, Zhang JG, Yin X, Wu JT, Wu L, Zhou ZN, Zhang TL (2016) Energetic salts based on tetrazole N-oxide. Chemistry 22(23):7670–7685

    Article  CAS  Google Scholar 

  3. Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2013) Synthesis of 5-aminotetrazole-1N-oxide and its azo derivative: a key step in the development of new energetic materials. Chemistry 19(14):4602–4613

    Article  CAS  Google Scholar 

  4. Zhang J, Mitchell LA, Parrish DA, Shreeve JM (2015) Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J Am Chem Soc 137(33):10532–10535

    Article  CAS  Google Scholar 

  5. Yin P, He C, Shreeve JM (2016) Fully C/N-polynitro-functionalized 2,2’-biimidazole derivatives as nitrogen- and oxygen-rich energetic salts. Chemistry 22(6):2108–2113

    Article  CAS  Google Scholar 

  6. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) Pushing the limits of energetic materials – the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chemi 22(38):20418–20422

    Article  CAS  Google Scholar 

  7. Klapötke TM, Petermayer C, Piercey DG, Stierstorfer J (2012) 1,3-Bis(nitroimido)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. J Am Chem Soc 134(51):20827–20836

    Article  Google Scholar 

  8. He C, Shreeve JM (2016) Potassium 4,5-Bis(dinitromethyl)furoxanate: a green primary explosive with a positive oxygen balance. Angew Chem Int Ed Engl 55(2):772–775

    Article  CAS  Google Scholar 

  9. Hu L, Yin P, Zhao G, He C, Imler GH, Parrish DA, Gao H, Shreeve JM (2018) Conjugated energetic salts based on fused rings: insensitive and highly dense materials. J Am Chem Soc 140(44):15001–15007

    Article  CAS  Google Scholar 

  10. Zeng Q, Qu Y, Li J, Huang H (2016) A DFT study of five-membered nitrogen-containing fused heterocycles for insensitive highly energetic materials. RSC Adv 6(80):77005–77012

    Article  CAS  Google Scholar 

  11. Tang Y, Gao H, Mitchell LA, Parrish DA, Shreeve JM (2016) Syntheses and promising properties of dense energetic 5,5’-Dinitramino-3,3’-azo-1,2,4-oxadiazole and Its salts. Angew Chem Int Ed Engl 55(9):3200–3203

    Article  CAS  Google Scholar 

  12. Zhai L, Bi F, Huo H, Luo Y, Li X, Chen S, Wang B (2019) The ingenious synthesis of a nitro-free insensitive high-energy material featuring face-to-face and edge-to-face pi-interactions. Front Chem 7:559

    Article  CAS  Google Scholar 

  13. Thottempudi V, Shreeve JM (2011) Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,5’-bis(trinitromethyl)-3,3’-azo-1H-1,2,4-triazole. J Am Chem Soc 133(49):19982–19992

    Article  CAS  Google Scholar 

  14. Fischer N, Karaghiosoff K, Klapötke Thomas M, Stierstorfer J (2010) New energetic materials featuring tetrazoles and nitramines - synthesis, characterization and properties. Zeitschrift für anorganische und allgemeine Chemie 636(5):735–749

    Article  CAS  Google Scholar 

  15. Holl G, Klapötke TM, Polborn K, Rienäcker C (2003) Structure and bonding in 2-diazo-4,6-dinitrophenol (DDNP). Propellants, Explos, Pyrotech 28(3):153–156

    Article  CAS  Google Scholar 

  16. Karaghiosoff K, Klapötke TM, Michailovski A, Nöth H, Suter M, Holl G (2003) 1,4-diformyl-2,3,5,6-tetranitratopiperazine: a new primary explosive based on glyoxal. Propellants, Explos, Pyrotech 28(1):1–6

    Article  CAS  Google Scholar 

  17. Perger WF, Zhao J, Winey JM, Gupta YM (2006) First-principles study of pentaerythritol tetranitrate single crystals under high pressure: vibrational properties. Chem Phys Lett 428(4–6):394–399

    Article  CAS  Google Scholar 

  18. Byrd EFC, Rice BM (2007) Ab initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaerythritol Tetranitrate (PETN). The Journal of Physical Chemistry C 111(6):2787–2796

    Article  CAS  Google Scholar 

  19. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. Gaussian 09, revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.

  20. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 38(6):3098–3100

    Article  CAS  Google Scholar 

  22. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter 33(12):8822–8824

    Article  CAS  Google Scholar 

  23. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    Article  CAS  Google Scholar 

  24. Rice BM, Byrd EFC (2013) Evaluation of electrostatic descriptors for predicting crystalline density. J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  25. Byrd EFC, Rice BMJ (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005

    Article  CAS  Google Scholar 

  26. Kamlet MJ, Jacobs SJ (1968) Chemistry of Detonations. I. A simple method for calculating detonation properties of C-H–N–O explosives. The Journal of Chemical Physics 48(1):23–35

    Article  CAS  Google Scholar 

  27. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  28. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  Google Scholar 

  29. Piercey DG, Chavez DE, Scott BL, Imler GH, Parrish DA (2016) An energetic triazolo-1,2,4-triazine and its N-oxide. Angew Chem Int Ed Engl 55(49):15315–15318

    Article  CAS  Google Scholar 

  30. Snyder CJ, Myers TW, Imler GH, Chavez DE, Parrish DA, Veauthier JM, Scharff RJ (2017) Tetrazolyl triazolotriazine: a new insensitive high explosive. Propellants, Explos, Pyrotech 42(3):238–242

    Article  CAS  Google Scholar 

  31. Chellappa RS, Dattelbaum DM, Coe JD, Velisavljevic N, Stevens LL, Liu Z (2014) Intermolecular stabilization of 3,3’-diamino-4,4’-azoxyfurazan (DAAF) compressed to 20 GPa. J Phys Chem A 118(31):5969–5982

    Article  CAS  Google Scholar 

  32. Hollins RA, Merwin LH, Nissan RA, Wilson WS, Gilardi R (1996) Aminonitropyridines and theirN-oxides. J Heterocycl Chem 33(3):895–904

    Article  CAS  Google Scholar 

  33. Kosar B, Albayrak C (2011) Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta A Mol Biomol Spectrosc 78(1):160–167

    Article  Google Scholar 

  34. Suvitha A, Periandy S, Boomadevi S, Govindarajan M (2014) Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochim Acta A Mol Biomol Spectrosc 117:216–224

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O Compounds. Central European Journal of Energetic Materials 8(3):209–220

    CAS  Google Scholar 

Download references

Funding

We are thankful to the NSAF (U1830134) and NSFC (21905023 & 22175025) for their generous financial support.

Author information

Authors and Affiliations

Authors

Contributions

Jian-Guo Zhang contributed to the conception of the study; Jing-Ru Li performed the experiment; Jing-Ru Li performed the data analyses and wrote the manuscript; Jian-Guo Zhang helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Jian-Guo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4437 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JR., Zhang, JG. Design and properties of a new family of wing-like and propeller-like multi-tetrazole molecules as potential high-energy density compounds. J Mol Model 27, 308 (2021). https://doi.org/10.1007/s00894-021-04935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04935-6

Keywords

Navigation