Skip to main content
Log in

Benchmark of different charges for prediction of the partitioning coefficient through the hydrophilic/lipophilic index

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A few different theoretical methods for assigning the partial atomic charges were benchmarked for calculation of the hydrophilic/lipophilic index (HLI). The coefficients were selected to produce the best correlation of the HLI values with the experimental octanol-water partition. Different parameters were checked in calculations of partial charges to get the best performance of the HLI values obtained. Thus, four partitioning schemes (Coulson, Mulliken, Merz-Kollman, Ford-Wang) were benchmarked for calculations of atomic charges with six semiempirical methods (AM1, PM3, RM1, PM6, PM6-D3H4, PM7). Moreover, five distinct types of partial atomic charges (Mulliken, Hirshfeld, Löwdin, CHELPG, NPA), obtained at the Hartree–Fock and DFT levels of theory with three basis sets, were tested for their ability to produce the HLI values with the best correlation to experimental logP coefficients of 50 mono-charged organic anions. In the case of the semiempirical methods, the best correlation between the HLI and logP values (the correlation coefficient r = 0.9216) was obtained with the AM1 Ford–Wang parametric electrostatic potential charges. The Mulliken and Coulson charges calculated with the PM7 method can be used as an alternative to AM1, with the r values of 0.9107 and 0.8984, respectively. In the case of the DFT, the PBE/def2-TZVP natural population analysis charges produce the best correlation (r = 0.9220). Nevertheless, in spite of a marginally lower performance (r = 0.9159), the NPA charges computed at the PBE/def2-SVP level are more robust and can be regarded as the optimum choice for calculating the HLI values.

The hydrophilic/lipophilic index (HLI)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  3. Hawrył AM, Popiołek ŁP, Hawrył MA, Świeboda RS, Niejedlia MA (2015) Chromatographic and calculation methods for analysis of the lipophilicity of newly synthesized thiosemicarbazides and their cyclic analogues 1,2,4-triazol-3-thiones. J Braz Chem Soc 26:1617–1624

    Google Scholar 

  4. Barzanti C, Evans R, Fouquet J, Gouzin L, Howarth NM, Kean G, Levet E, Wang D, Wayemberg E, Yeboah AA, Kraft A (2007) Potentiometric determination of octanol–water and liposome–water partition coefficients (logP) of ionizable organic compounds. Tetrahedron Lett 48:3337–3341

    Article  CAS  Google Scholar 

  5. Remko M (2010) Molecular structure, pKa, lipophilicity, solubility and absorption of biologically active aromatic and heterocyclic sulfonamides. J Mol Struc THEOCHEM 944:34–42

    Article  CAS  Google Scholar 

  6. Zou J-W, Zhao W-N, Shang Z-C, Huang M-L, Guo M, Yu Q-S (2002) A quantitative structure-property relationship analysis of logP for disubstituted benzenes. J Phys Chem A 106:11550–11557

    Article  CAS  Google Scholar 

  7. Bannan CC, Calabró G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12:4015–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen C-S, Lin S-T (2016) Prediction of pH effect on the octanol−water partition coefficient of ionizable pharmaceuticals. Ind Eng Chem Res 55:9284–9294

    Article  CAS  Google Scholar 

  9. Jones MR, Brooks BR, Wilson AK (2016) Partition coefficients for the SAMPL5 challenge using transfer free energies. J Comput Aided Mol Des 30:1129–1138

    Article  CAS  PubMed  Google Scholar 

  10. Kah M, Brown CD (2008) LogD: lipophilicity for ionisable compounds. Chemosphere 72:1401–1408

    Article  CAS  PubMed  Google Scholar 

  11. Martel S, Begnaud F, Schuler W, Gillerat F, Oberhauser N, Nurisso A, Carrupt P-A (2016) Limits of rapid logP determination methods for highly lipophilic and flexible compounds. Anal Chim Acta 915:90–101

    Article  CAS  PubMed  Google Scholar 

  12. Nieto-Draghi C, Fayet G, Creton B, Rozanska X, Rotureau P, de Hemptinne J-C, Ungerer P, Rousseau B, Adamo C (2015) A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes. Chem Rev 115:13093–13164

    Article  CAS  PubMed  Google Scholar 

  13. Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of logP methods on more than 96,000 compounds. J Pharm Sci 98:861–893

    Article  CAS  PubMed  Google Scholar 

  14. Dapson RW (2013) Alternative methods for estimating common descriptors for QSAR studies of dyes and fluorescent probes using molecular modeling software. 1. Concepts and procedures. Biotech Histochem 88:477–488

  15. Dapson RW, Horobin RW (2013) Alternative methods for estimating common descriptors for QSAR studies of dyes and fl uorescent probes using molecular modeling software. 2. Correlations between logP and the hydrophilic/lipophilic index, and new methods for estimating degrees of amphiphilicity. Biotech Histochem 88:489–497

    Article  CAS  PubMed  Google Scholar 

  16. Mulliken RS (1955) Electronic population analysis on LCAOMO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  17. Mulliken RS (1962) Criteria for the construction of good self consistent field molecular orbital wave functions, and the significance of LCAOMO population analysis. J Chem Phys 36:3428–3439

    Article  CAS  Google Scholar 

  18. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  19. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  20. Wang B, Ford GP (1994) Atomic charges derived from a fast and accurate method for electrostatic potentials based on modified AM1 calculations. J Comput Chem 15:200–207

    Article  CAS  Google Scholar 

  21. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  22. Besler BH, Merz Jr KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  23. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  24. Löwdin P-O (1970) On the nonorthogonality problem. Adv Quantum Chem 5:185–199

    Article  Google Scholar 

  25. Cusachs LC, Politzer P (1968) On the problem of defining the charge on an atom in a molecule. Chem Phys Lett 1:529–531

    Article  CAS  Google Scholar 

  26. Mayer I (2004) Lowdin population analysis is not rotationally invariant. Chem Phys Lett 393:209–212

    Article  CAS  Google Scholar 

  27. Bruhn G, Davidson ER, Mayer I, Clark AE (2006) Lowdin population analysis with and without rotational invariance. Int J Quantum Chem 106:2065–2072

    Article  CAS  Google Scholar 

  28. Löwdin P-O (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489

    Article  Google Scholar 

  29. Coulson CA, Longuet-Higgins HC (1947) The electronic structure of conjugated systems. II. Unsaturated hydrocarbons and their hetero-derivatives. Proc Roy Soc A 192:16–32

    Article  CAS  Google Scholar 

  30. Chirgwin BH, Coulson CA (1950) The electronic structure of conjugated systems. VI. Proc Roy Soc A 201:196–209

    Article  CAS  Google Scholar 

  31. Leahy DE (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J Pharm Sci 75:629–636

    Article  CAS  PubMed  Google Scholar 

  32. Leahy DE, Taylor PJ, Wait AR (1989) Model solvent systems for QSAR. Part I. Propylene glycol dipelargonate (PGDP). A new standard solved for use in partition coefficient determination. Quant Struct-Act Relat 8:17–31

    Article  CAS  Google Scholar 

  33. Leahy DE, Morris JJ, Taylor PJ, Wait AR (1992) Model solvent systems for QSAR. Part 3. An LSER analysis of the ‘critical quartet.’ New light on hydrogen bond strength and directionality. J Chem Soc Perkin Trans 2:705–722

    Article  Google Scholar 

  34. Leo AJ (1993) Calculating log Poct from structures. Chem Rev 93:1281–1306

    Article  CAS  Google Scholar 

  35. Leo A (1983) The octanol-water partition coefficient of aromatic solutes: the effect of electronic interactions, alkyl chains, hydrogen bonds, and ortho-substitution. J Chem Soc Perkin Trans 2:825–838

  36. Leo AJ (1991) Calculating the hydrophobicity of chlorinated hydrocarbon solutes. Sci Total Environ 109–110:121–130

    Article  Google Scholar 

  37. Paley O (2014) Cetylpyridinium chloride. Synlett 25:599–600

    Article  CAS  Google Scholar 

  38. Sigma-Aldrich Chemie GmbH (2018) Sodium benzoate, safety data sheet, version 5.1. Revision date 19.09.2014. https://www.sigmaaldrich.com

  39. Balon K, Riebesehl BU, Müller BW (1999) Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res 16:882–888

    Article  CAS  PubMed  Google Scholar 

  40. Sigma-Aldrich Chemie GmbH, Sodium xylenesulfonate, Safety Data Sheet, Version 5.1 Revision Date 20.05.2013

  41. Schwarrenbach RP, Stierli R, Folsom BR, Zeyer J (1988) Compound properties relevant for assessing the environmental partitioning of nitrophenols. Environ Sci Technol 22:83–92

    Article  Google Scholar 

  42. Takacs-Novak K, Jozan M, Szasz G (1995) Lipophilicity of amphoteric molecules expressed by the true partition coefficient. Int J Pharm 113:47–55

    Article  CAS  Google Scholar 

  43. Terada H, Inagi T (1977) Partition of methyl orange between H2O and n-octanol. Membranes 2:63–68

    Article  CAS  Google Scholar 

  44. Sigma-Aldrich Chemie GmbH (2018) Sodium p-toluenesulfonate, safety data sheet, version 5.1. Revision date 06.02.2013. https://www.sigmaaldrich.com

  45. Sigma-Aldrich Chemie GmbH (2018) 2-Mercaptopyridine N-oxide sodium salt, safety data sheet, version 5.0. Revision date 03.08.2012. https://www.sigmaaldrich.com

  46. DHI, Milieu Ltd., Protection Through Knowledge Ltd. (2018) Review of annex IV of the regulation No. 1907/2006 (REACH). Evaluation of existing entries, p 113. http://ec.europa.eu/environment/chemicals/reach/pdf/6b_appendix_2.pdf

  47. Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064

    Article  CAS  Google Scholar 

  48. Ying G-G (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  PubMed  Google Scholar 

  49. Fizer M, Slivka M (2016) Synthesis of [1,2,4]triazolo[1,5-a]pyrimidine (microreview). Chem Heterocycl Compd 52:155–157

    Article  CAS  Google Scholar 

  50. Fizer MM, Slivka MV, Lendel VG (2013) New method of synthesis of 3,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a] pyrimidine-2(1H)-thione. Chem Heterocycl Compd 49:1243–1245

    Article  CAS  Google Scholar 

  51. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  52. Stewart JJP (1989) Optimization of parameters for semiempirical methods II. Applications. J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  53. Rocha GB, Freire RO, Simas AM, Stewart JJP (2006) RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem 27:1101–1111

    Article  CAS  PubMed  Google Scholar 

  54. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104-1–154104-19

    Article  CAS  Google Scholar 

  56. Řezáč J, Hobza P (2012) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8:141–151

    Article  CAS  PubMed  Google Scholar 

  57. Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    Article  CAS  PubMed  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  59. Becke AD (1993) A new mixing of Hartree–Fock and local density functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  60. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms li to Kr. J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  61. Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms li to Kr. J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  62. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  63. Zheng J, Xu X, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Accounts 128:295–305

    Article  CAS  Google Scholar 

  64. Neese F (2003) An improvement of the resolution of the identity approximation for the calculation of the coulomb matrix. J Comput Chem 24:1740–1747

    Article  CAS  PubMed  Google Scholar 

  65. Izsak R, Neese F (2011) An overlap fitted chain of spheres exchange method. J Chem Phys 135:144105-1–144105-11

    Article  CAS  Google Scholar 

  66. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4:17

    Article  CAS  Google Scholar 

  67. Rappe AK, Casewit CJ, Colwell KS, Goddard IIIWA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  68. Stewart JJP (2016) MOPAC2016. Stewart Computational Chemistry, Colorado Springs http://OpenMOPAC.net

  69. Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  70. Nikolaienko TY, Bulavin LA, Hovorun DM (2014) JANPA: an open source crossplatform implementation of the natural population analysis on the java platform. Comput Theor Chem 1050:15–22

    Article  CAS  Google Scholar 

  71. Advanced Chemistry Development Inc. (2015) ADC/Chemsketch (freeware). Advanced Chemistry Development Inc., Toronto, Canada http://www.acdlabs.com

  72. Fizer M, Sukharev S, Slivka M, Mariychuk R, Lendel V (2016) Preparation of bisthiourea and 5-Amino-4-benzoyl-1,2,4-triazol-3-thione complexes of copper(II), nickel and zinc and their biological evolution. J Organomet Chem 804:6–12

    Article  CAS  Google Scholar 

  73. Bevziuk K, Chebotarev A, Snigur D, Bazel Y, Fizer M, Sidey V (2017) Spectrophotometric and theoretical studies of the protonation of Allura red AC and Ponceau 4R. J Mol Struct 1144:216–224

    Article  CAS  Google Scholar 

  74. Cao J, Ren Q, Chen F, Lu T (2015) Comparative study on the methods for predicting the reactive site of nucleophilic reaction. Sci China Chem 58:1845–1852

    Article  Google Scholar 

  75. Fizer M, Sidey V, Tupys A, Ostapiuk Y, Tymoshuk O, Bazel Y (2017) On the structure of transition metals complexes with the new tridentate dye of thiazole series: theoretical and experimental studies. J Mol Struct 1149:669–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.F. would like to thank DSc. James J. P. Stewart for providing the program MOPAC2016 and for helpful suggestions. O.F. acknowledges support from the International Visegrad Fund (ID 51700627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym Fizer.

Electronic supplementary material

ESM 1

(PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fizer, O., Fizer, M., Sidey, V. et al. Benchmark of different charges for prediction of the partitioning coefficient through the hydrophilic/lipophilic index. J Mol Model 24, 141 (2018). https://doi.org/10.1007/s00894-018-3692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3692-x

Keywords

Navigation