Skip to main content
Log in

Minimally augmented Karlsruhe basis sets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We propose an extension of the basis sets proposed by Ahlrichs and coworkers at Karlsruhe (these basis sets are designated as the second-generation default or “def2” basis sets in the Turbomole program). The Karlsruhe basis sets are very appealing because they constitute balanced and economical basis sets of graded quality from partially polarized double zeta to heavily polarized quadruple zeta for all elements up to radon (Z = 86). The extension consists of adding a minimal set of diffuse functions to a subset of the elements. This yields basis sets labeled minimally augmented or with “ma” as a prefix. We find that diffuse functions are not quite as important for the def2 basis sets as they are for Pople basis sets, but they are still necessary for good results on barrier heights and electron affinities. We provide assessments and validations of this extension for a variety of data sets and representative cases. We recommend the new ma-TZVP basis set for general-purpose applications of density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab Initio Molecular Orbital Theory. New York, John Wiley & Sons

    Google Scholar 

  2. Dunning T H Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  3. Wilson AK, Woon DE, Peterson KA, Dunning T H Jr (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  4. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 19:12753

    Article  Google Scholar 

  5. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  6. Ahlrichs R et al (2010) Turbomole—program package for ab initio electronic structure calculations. http://www.turbomole.com. Accessed 21 April, 2010

  7. Ahlrichs R et al (2010) Turbomole user’s manual, Version 6.0, Feburary 3, 2009. http://www.cosmologic.de/data/DOK.pdf. Accessed 30, April, 2010

  8. Papajak E, Leverentz H, Zheng J, Truhlar DG (2009) J Chem Theory Comput 5:1197

    Article  CAS  Google Scholar 

  9. Papajak E, Truhlar DG (2010) J Chem Theory Comput 6:597

    Article  CAS  Google Scholar 

  10. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Article  CAS  Google Scholar 

  11. Zheng J, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569

    Article  CAS  Google Scholar 

  12. Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808

    Article  CAS  Google Scholar 

  13. Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:3898

    Article  CAS  Google Scholar 

  14. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    Article  CAS  Google Scholar 

  15. Marchetti O, Werner H-J (2009) J Phys Chem A 113:11580

    Article  CAS  Google Scholar 

  16. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Article  Google Scholar 

  17. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  20. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  21. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  22. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  23. Hobza P (2010) http://www.begdb.com. Accessed 30 April, 2010

  24. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  25. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  26. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) J Comput Chem 4:294

    Article  CAS  Google Scholar 

  27. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  28. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  29. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phy 110:4703

    Article  CAS  Google Scholar 

  30. Fast PL, Sanchez ML, Truhlar DG (1999) Chem Phys Lett 306:407

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli, JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz, JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A 02, Gaussian Inc., Wallingford, CT

  32. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schutz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia,G, Koeppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pfueger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2008) MOLPRO, version 2008.1,Universität Stuttgart, Stuttgart, Germany

  33. Del Bene JE, Aue DH, Shavitt I (1992) J Am Chem Soc 114:1631

    Article  CAS  Google Scholar 

  34. Lynch BJ, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:1643

    Article  CAS  Google Scholar 

  35. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Article  CAS  Google Scholar 

  36. Alvarez-Idaboy JR, Galano A (2010) Theo Chem Acc 126:75

    Article  CAS  Google Scholar 

  37. Tang KT, Toennies JP (1984) J Chem Phys 80:3726

    Article  CAS  Google Scholar 

  38. Paesani F, Gianturco F, Lewerenz M, Toennies JP (1999) J Chem Phys 111:6897

    Article  CAS  Google Scholar 

  39. Scheer M, Bilodeau RC, Haugen HK (1998) Phys Rev Lett 80:2562

    Article  CAS  Google Scholar 

  40. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  43. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  44. Adamo C, Cossi M, Barone V (1999) Theochem 493:147

    Google Scholar 

  45. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  46. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127

    Article  CAS  Google Scholar 

  47. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U. S. Department of Energy, Office of Basic Energy Sciences, under grant no. DE-FG02-86ER13579 and by the Air Force Office of Scientific Research under grant no. FA9550-08-1-0183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Truhlar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 96 kb)

Appendix

Appendix

Table 10 shows errors in the DBH24/08 barrier heights for three density functionals with two different schemes for extending the basis sets; the errors are nearly the same when the basis is extended by a geometric series in the exponential parameters or by the simpler scheme of a factor of 3. These and other less systematic considerations led us to conclude that the simple scheme of dividing by 3 is adequate for most purposes, and we therefore adopted that scheme for our standard definition of the augmented def2 basis sets.

Table 10 Mean signed unsigned errors in barrier heights (kcal/mol) using two different schemes for augmentation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Xu, X. & Truhlar, D.G. Minimally augmented Karlsruhe basis sets. Theor Chem Acc 128, 295–305 (2011). https://doi.org/10.1007/s00214-010-0846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0846-z

Keywords

Navigation