Skip to main content
Log in

Substituent effect of the stacking interaction between carbon monoxide and benzene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Noncovalent interactions (NCIs) between carbon monoxide and substituted benzene were investigated at the M06-2X/6-311++G(d,p) level. rThe results of interaction energy analysis indicated different effects for the electron-donating (–NH2, –OH, –CH3) and electron-withdrawing (–F, –CN, –NO2) groups on the CO⋯PhX complex. Atoms in molecules analysis confirmed the NCIs between CO and PhX. NCI analysis revealed that these interactions belong to van der Waals interactions. The electron density shift of the complexes was investigated with electron density difference analysis. Ternary CO⋯PhX⋯Bz complexes were designed to study the interplay between CO⋯π and π⋯π stacking interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  2. Salonen LM, Ellermann M, Diederich F (2011) Angew Chem Int Ed 50:4808–4842

    Article  CAS  Google Scholar 

  3. Persch E, Dumele O, Diederich F (2015) Angew Chem Int Ed 54:2–40

    Article  CAS  Google Scholar 

  4. Cooper VR, Thonhauser T, Puzder A, Schroder E, Lundqvist BI, Langreth DC (2008) J Am Chem Soc 130:1304–1308

    Article  CAS  PubMed  Google Scholar 

  5. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Nucleic Acids Res 34:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  7. Bloom JWG, Raju RK, Wheeler SE (2012) J Chem Theory Comput 8:3167–3174

    Article  CAS  PubMed  Google Scholar 

  8. Subha Mahadevi A, Narahari Sastry G (2013) Chem Rev 113:2100–2138

    Article  CAS  PubMed  Google Scholar 

  9. Schottel BL, Chifotidesa HT, Dunbar KR (2008) Chem Soc Rev 37:68–83

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharyya R, Samanta U, Chakrabarti P (2002) Protein Eng 15:91–100

    Article  CAS  PubMed  Google Scholar 

  11. Rutledge LR, Campbell-Verduyn LS, Hunter KC, Wetmore SD (2006) J Phys Chem B 110:19652–19663

    Article  CAS  PubMed  Google Scholar 

  12. Hong BH, Lee JY, Lee CW, Kim JC, Bae SC, Kim KS (2001) J Am Chem Soc 123:10748–10749

    Article  CAS  PubMed  Google Scholar 

  13. Hobza P, Selzle HL, Schlag EW (1994) J Am Chem Soc 116:3500–3506

    Article  CAS  Google Scholar 

  14. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

    Article  CAS  PubMed  Google Scholar 

  15. Hill JG, Platts JA, Werner HJ (2006) Phys Chem Chem Phys 8:4072–4078

    Article  CAS  PubMed  Google Scholar 

  16. Grimme S (2003) J Chem Phys 118:9095–9102

    Article  CAS  Google Scholar 

  17. Sinnokrot MO, Sherrill CD (2004) J Am Chem Soc 126:7690–7697

    Article  CAS  PubMed  Google Scholar 

  18. Ringer AL, Sherrill CD (2009) J Am Chem Soc 131:4574–4575

    Article  CAS  PubMed  Google Scholar 

  19. Raju RK, Bloom JWG, Wheeler SE (2013) J Chem Theory Comput 9:3479–3490

    Article  CAS  PubMed  Google Scholar 

  20. Wheeler SE (2011) J Am Chem Soc 133:10262–10274

    Article  CAS  PubMed  Google Scholar 

  21. Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446–3457

    Article  CAS  PubMed  Google Scholar 

  22. Hohenstein EG, Duan J, Sherrill CD (2011) J Am Chem Soc 133:13244–13247

    Article  CAS  PubMed  Google Scholar 

  23. Raju RK, Bloom JWG, An Y, Wheeler SE (2011) ChemPhysChem 12:3116–3130

    Article  CAS  PubMed  Google Scholar 

  24. Watt M, Hardebeck LKE, Kirkpatrick CC, Lewis M (2011) J Am Chem Soc 133:3854–3862

    Article  CAS  PubMed  Google Scholar 

  25. Escudero D, Frontera A, Quiñonero D, Deya PM (2008) J Phys Chem A 112:6017–6022

    Article  CAS  PubMed  Google Scholar 

  26. Kulkarni C, Reddy SK, George SJ, Balasubramanian S (2011) Chem Phys Lett 515:226–230

    Article  CAS  Google Scholar 

  27. Li H, Lu Y, Liu Y, Zhu X, Liu H, Zhu W (2012) Phys Chem Chem Phys 14:9948–9955

    Article  CAS  PubMed  Google Scholar 

  28. Tam AY, Wong KM, Wang G, Yam VW (2007) Chem Commun 20:2028–2030

    Article  Google Scholar 

  29. Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730–11731

    Article  CAS  PubMed  Google Scholar 

  30. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  31. Omaye ST (2002) Toxicology 180:139–150

    Article  CAS  PubMed  Google Scholar 

  32. Olas B (2014) Chem Biol Interact 222:37–43

    Article  CAS  PubMed  Google Scholar 

  33. Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  34. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  35. Murray JS, Politzer P (2017) WIREs Comput Mol Sci 7:e1326. https://doi.org/10.1002/wcms.1326

  36. Kim H, Doan VD, Cho WJ, Valero R, Tehrani ZA, JML M, Kim KS (2015) Sci Rep 5:16307–16315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanco F, Alkorta I, Solimannejad M, Elguero J (2009) J Phys Chem A 113:3237–3244

    Article  CAS  PubMed  Google Scholar 

  38. Ghara M, Pan S, Kumar A, Merino G, Chattaraj PK (2016) J Comput Chem 37:2202–2211

    Article  CAS  PubMed  Google Scholar 

  39. Zhou P, Yang X, Ye W, Zhang L, Yang F, Zhou D, Liu S (2016) New J Chem 40:9139–9147

    Article  CAS  Google Scholar 

  40. Yang X, Yan C, Zhou P, Yang F, Zhou D, Zhou P, Liu S (2017) ChemistrySelect 2:2687–2699

    Article  CAS  Google Scholar 

  41. Yang X, Yang F, Wu R, Yan C, Zhou D, Zhou P, Yao X (2017) J Mol Graph Model 76:419–428

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Zhou P, Yang F, Zhou D, Yan C, Zheng P, Dai Y (2016) ChemistrySelect 1:1741–1750

    Article  CAS  Google Scholar 

  43. Ramanathan N, Sankaran K, Sundararajan K (2017) J Phys Chem A 121:9081–9091

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. AIMAll (Version 11.12.19), Todd A. Keith, TK Gristmill Software, Overland Park, KS, 2015 (http://aim.tkgristmill.com/)

  47. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  48. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammett LP (1935) Chem Rev 17:125–136

    Article  CAS  Google Scholar 

  50. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  51. Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107

    Article  CAS  PubMed  Google Scholar 

  52. Miliordos E, Aprà E, Xantheas SS (2014) J Phys Chem A 118:7568–7578

    Article  CAS  PubMed  Google Scholar 

  53. Delarami HS, Ebrahimi A (2015) Mol Phys 114:774–783

    Article  CAS  Google Scholar 

  54. Chen X, Bai F, Wang H, Zhang H, Tang Y (2015) RSC Adv 5:47681–47691

    Article  CAS  Google Scholar 

  55. Gao W, Tian Y, Xuan X (2015) J Mol Graph Model 60:118–123

    Article  CAS  PubMed  Google Scholar 

  56. Azizi A, Ebrahimi A (2017) J Mol Graph Model 77:225–231

    Article  CAS  PubMed  Google Scholar 

  57. Yuan K, Zhao R, Zheng J, Zheng H, Nagase S, Zhao S, Liu Y, Zhao X (2017) J Comput Chem 38:730–739

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Zeng Y, Li X, Meng L, Zhang X (2016) Struct Chem 27:1427–1437

    Article  CAS  Google Scholar 

  59. Li W, Zeng Y, Li X, Sun Z, Meng L (2016) Phys Chem Chem Phys 18:24672–24680

    Article  CAS  PubMed  Google Scholar 

  60. Subha Mahadevi A, Narahari Sastry G (2016) Chem Rev 116:2775–2825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful for the help of the high performance computing center in Shandong University and the helpful advice of Prof. Feng of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Substituent effect of the stacking interaction between carbon monoxide and benzene. J Mol Model 24, 136 (2018). https://doi.org/10.1007/s00894-018-3674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3674-z

Keywords

Navigation