Skip to main content
Log in

Interplay between π···π stacking and cation···π interaction: a theoretical NMR study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Interplay between π···π stacking and cation···π interaction in cation···benzene···benzene complex is theoretically investigated using NMR viewpoint. The NMR calculations are performed at B3LYP/6-311++G(d,p) and PBE0/6-311++G(d,p) levels of theory. Here, the role of purely geometric and the direct electronic effects on the NMR data is studied. The results indicate that the electronic effects are dominant in determining NMR data. Also, the contribution of cation···π interaction to electronic effects is greater than that of π···π stacking. Moreover, meaningful relationships are also found between synergistic effects and NMR data. In addition to geometrical parameters and binding energies, it is observed that the topological properties of electron charge density can be useful to predict NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.A. Meyer, R.K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 42, 1210–1250 (2003)

    Article  CAS  Google Scholar 

  2. P. Hobza, H.L. Selzle, E.W. Schlag, J. Phys. Chem. 97, 3937–3938 (1993)

    Article  CAS  Google Scholar 

  3. P. Cysewski, Z. Czyznikowska, R. Zalesny, P. Czelen, Phys. Chem. Chem. Phys. 10, 2665–2672 (2008)

    Article  CAS  Google Scholar 

  4. J. Sponer, P. Jurecka, P. Hobza, J. Am. Chem. Soc. 126, 10142–10151 (2004)

    Article  CAS  Google Scholar 

  5. S.R. Choudhury, P. Gamez, A. Robertazzi, C.Y. Chen, H.M. Lee, S. Mukhopadhyay, Cryst. Growth Des. 8, 3773–3784 (2008)

    Article  CAS  Google Scholar 

  6. I.L. Budyak, A. Zhuravleva, L.M. Gierasch, J. Mol. Biol. 425, 3522–3535 (2013)

    Article  CAS  Google Scholar 

  7. L. Chen, F. Cao, H. Sun, Int. J. Quantum Chem. 113, 2261–2266 (2013)

    Article  CAS  Google Scholar 

  8. X. Lucas, D. Quiñonero, A. Frontera, P.M. Deyà, Chem. Phys. Chem. 12, 283–288 (2011)

    CAS  Google Scholar 

  9. A. Ebrahimi, M. Habibi, R.S. Neyband, A.R. Gholipour, Phys. Chem. Chem. Phys. 11, 11424–11431 (2009)

    Article  CAS  Google Scholar 

  10. V.M. Manikandamathavan, B.U. Nair, Eur. J. Med. Chem. 68, 244–252 (2013)

    Article  CAS  Google Scholar 

  11. R. Ranjbar-Karimi, A. Aslani, M. Mashak-Shoshtari, J. Iran. Chem. Soc. 10, 873–881 (2013)

    Article  CAS  Google Scholar 

  12. G.B. McGaughey, M. Gagné, A.K. Rappé, J. Biol. Chem. 273, 15458–15463 (1998)

    Article  CAS  Google Scholar 

  13. C. Feng, C. Lin, X. Zhang, R. Zhang, J. Theor. Comput. Chem. 9, 109–123 (2010)

    Article  CAS  Google Scholar 

  14. S. Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe, Chem. Phys. Lett. 319, 547–554 (2000)

    Article  CAS  Google Scholar 

  15. S. Tsuzuki, Struct. Bond. 115, 149–193 (2005)

    Article  CAS  Google Scholar 

  16. J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303–1324 (1997)

    Article  CAS  Google Scholar 

  17. A. Rimola, L.R. Santiago, M. Sodupe, J. Phys. Chem. B 110, 24189–24199 (2006)

    Article  CAS  Google Scholar 

  18. R.A. Kumpf, D.A. Dougherty, Science 261, 1708–1710 (1993)

    Article  CAS  Google Scholar 

  19. E.S. Meadows, S.L. De Wall, L.J. Barbour, G.W. Gokel, J. Am. Chem. Soc. 123, 3092–3107 (2001)

    Article  CAS  Google Scholar 

  20. A. Anbarasu, S. Anand, L. Mathew, R. Sethumadhavan, Int. J. Biol. Macromolec. 40, 479–483 (2007)

    Article  CAS  Google Scholar 

  21. N. Zacharias, D.A. Dougherty, Trends Pharmacol. Sci. 23, 281–287 (2002)

    Article  CAS  Google Scholar 

  22. R. Wintjens, J. Levin, M. Rooman, E. Buisine, J. Mol. Biol. 302, 393–408 (2000)

    Article  Google Scholar 

  23. Y. Mo, G. Subramanian, J. Gao, D.M. Ferguson, J. Am. Chem. Soc. 124, 4832–4837 (2002)

    Article  CAS  Google Scholar 

  24. C.C. Chen, W. Hsu, K.C. Hwang, J.R. Hwu, C.C. Lin, J.C. Horng, Arch. Biochem. Biophys. 508, 46–53 (2011)

    Article  CAS  Google Scholar 

  25. S.Z. Borozan, B.P. Dimitrijević, S.Đ. Stojanović, Comp. Biol. Chem. 47, 105–112 (2013)

    Article  CAS  Google Scholar 

  26. B.K. Mishra, V.K. Bajpai, V. Ramanathan, S.R. Gadre, N. Sathyamurthy, Mol. Phys. 106, 1557–1566 (2008)

    Article  CAS  Google Scholar 

  27. D. Vijay, G.N. Sastry, Phys. Chem. Chem. Phys. 10, 582–590 (2008)

    Article  CAS  Google Scholar 

  28. S. Yamada, Org. Biomol. Chem. 5, 2903–2912 (2007)

    Article  CAS  Google Scholar 

  29. D.A. Dougherty, Acc. Chem. Res. 46, 885–893 (2013)

    Article  CAS  Google Scholar 

  30. N.J. Singh, S.K. Min, D.Y. Kim, K.S. Kim, J. Chem. Theory Comput. 5, 515–529 (2009)

    Article  CAS  Google Scholar 

  31. E. Cubero, M. Orozco, F.J. Luque, J. Phys. Chem. A 103, 315–321 (1999)

    Article  CAS  Google Scholar 

  32. A. Mohajeri, E. Karimi, J. Mol. Struct. (Theochem). 774, 71–76 (2006)

    Article  CAS  Google Scholar 

  33. R.E. Babine, S.L. Bender, Chem. Rev. 97, 1359–1472 (1997)

    Article  CAS  Google Scholar 

  34. A. Frontera, D. Quiñonero, C. Garau, A. Costa, P. Ballester, P.M. Deyà, J. Phys. Chem. A 110, 9307–9309 (2006)

    Article  CAS  Google Scholar 

  35. C. Biot, R. Wintjens, M. Rooman, J. Am. Chem. Soc. 126, 6220–6221 (2004)

    Article  CAS  Google Scholar 

  36. D. Quiñonero, A. Frontera, C. Garau, P. Ballester, A. Costa, P.M. Deyà, Chem. Phys. Chem. 7, 2487–2491 (2006)

    Google Scholar 

  37. B.P. Dimitrijević, S.Z. Borozan, S.Đ. Stojanović, R. Soc, Chem. Adv. 2, 12963–12972 (2012)

    Google Scholar 

  38. T.I. Igumenova, K.K. Frederick, A.J. Wand, Chem. Rev. 106, 1672–1699 (2006)

    Article  CAS  Google Scholar 

  39. I. Alkorta, J. Elguero, J.E. Del Bene, J. Phys. Chem. A 111, 9924–9930 (2007)

    Article  CAS  Google Scholar 

  40. J.E. Del Bene, J. Elguero, Magn. Reson. Chem. 45, 714–719 (2007)

    Article  Google Scholar 

  41. R. Gawinecki, E. Kolehmainen, R. Dobosz, H.L. Khouzani, S. Chandrasekaran, J. Iran. Chem. Soc. 11, 17–25 (2014)

    Article  CAS  Google Scholar 

  42. J.E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 111, 3416–3422 (2007)

    Article  Google Scholar 

  43. J.W. Emsley, M. Longeri, D. Merlet, G. Pileio, N. Suryaprakash, J. Magn. Reson. 180, 245–255 (2006)

    Article  CAS  Google Scholar 

  44. H.R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, B. Makiabadi, Chem. Phys. Lett. 588, 31–36 (2013)

    Article  CAS  Google Scholar 

  45. Y.H. Chi, J.M. Shi, H.N. Li, W. Wei, E. Cottrill, N. Pan, H. Chen, Y. Liang, L. Yu, Y.Q. Zhang, C. Hou, Dalton Trans. 42, 15559–15569 (2013)

    Article  CAS  Google Scholar 

  46. F.B. Sayyed, C.H. Suresh, Chem. Phys. Lett. 523, 11–14 (2012)

    Article  CAS  Google Scholar 

  47. A. Ebrahimi, M. Habibi Khorassani, H.R. Masoodi, Chem. Phys. Lett. 493, 27–32 (2010)

    Article  CAS  Google Scholar 

  48. A. Ebrahimi, M. Habibi Khorassani, H.R. Masoodi, Chem. Phys. Lett. 504, 118–124 (2011)

    Article  CAS  Google Scholar 

  49. M. J. Frisch et al. Gaussian 09, revision A.02 (GAUSSIAN, Inc, Wallingford CT) (2009)

  50. Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Phys. 123, 161103-1–161103-4 (2005)

  51. Y. Zhao, D.G. Truhlar, Theor Chem Account. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  52. R. Peverati, D.G. Truhlar, J. Phys. Chem. Lett. 3, 117–124 (2012)

    Article  CAS  Google Scholar 

  53. A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289–320 (2012)

    Article  CAS  Google Scholar 

  54. E.G. Hohenstein, S.T. Chill, C.D. Sherrill, J. Chem. Theory Comput. 4, 1996–2000 (2008)

    Article  CAS  Google Scholar 

  55. Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory Comput. 2, 364–382 (2006)

    Article  Google Scholar 

  56. Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput. 3, 289–300 (2007)

    Article  CAS  Google Scholar 

  57. Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41, 157–167 (2008)

    Article  CAS  Google Scholar 

  58. M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503–506 (1988)

    Article  CAS  Google Scholar 

  59. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  60. E. Virtanen, A. Valkonen, J. Tamminen, E. Kolehmainen, J. Mol. Struct. 650, 201–212 (2003)

    Article  CAS  Google Scholar 

  61. C. Castro, W.L. Karney, C.M.H. Vu, S.E. Burkhardt, M.A. Valencia, J. Org. Chem. 70, 3602–3609 (2005)

    Article  CAS  Google Scholar 

  62. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158–6170 (1999)

    Article  CAS  Google Scholar 

  63. N.F. Ramsey, Phys. Rev. 78, 699–703 (1950)

    Article  CAS  Google Scholar 

  64. N.F. Ramsey, Phys. Rev. 91, 303–307 (1953)

    Article  CAS  Google Scholar 

  65. T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev. 99, 293–352 (1999)

    Article  CAS  Google Scholar 

  66. M. Kaupp, M. Bühl, V.G. Malkin, Calculation of NMR and EPR Parameters (Wiley, Weinheim, 2004)

    Book  Google Scholar 

  67. R.F.W. Bader, Atoms in molecules: a quantum theory (Oxford University Press, Oxford, 1990)

    Google Scholar 

  68. F. Biegler König, J. Schönbohm, J. Comput. Chem. 23, 1489–1494 (2002)

    Article  Google Scholar 

  69. D. Quiñonero, A. Frontera, P.M. Deyà, I. Alkorta, J. Elguero, Chem. Phys. Lett. 460, 406–410 (2008)

    Article  Google Scholar 

  70. O. A. Zhikol, O. V. Shishkin, K. A. Lyssenko, J. Leszczynski, J. Chem. Phys. 122, 144104-1–144104-8 (2005)

  71. A. Frontera, D. Quiñonero, C. Garau, P. Ballester, A. Costa, P.M. Deyà, F. Pichierri, Chem. Phys. Lett. 417, 371–377 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Masoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoodi, H.R., Bagheri, S. Interplay between π···π stacking and cation···π interaction: a theoretical NMR study. J IRAN CHEM SOC 12, 1883–1892 (2015). https://doi.org/10.1007/s13738-015-0663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0663-3

Keywords

Navigation