Skip to main content
Log in

Substituent effects on the regium-π stacking interactions between Au6 cluster and substituted benzene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The regium-π stacking interactions in the Au6···PhX (X = H, CH3, OH, OCH3, NH2, F, Cl, Br, CN, NO2) complexes are studied using quantum chemical methods. The present study focuses on the different effects of electron-donating and electron-withdrawing substituent. The structure and binding strength of the complexes are examined. The interactions between Au6 cluster and various substituted benzene become strengthened relative to the Au6···benzene complex. The interaction region indicator analysis was performed, and the interaction region and interaction between the substituent and Au6 cluster are discussed. It is found that the substituent effects on the regium-π stacking interactions between Au6 cluster and substituted benzene are different from π···π interactions of benzene dimer. Energy decomposition analysis was carried out to study the nature of regium-π stacking interactions, and the substituent effects are mainly reflected on the electrostatic interaction and dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5  
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Confirmed.

Code availability

Confirmed.

References

  1. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  2. Riley KE, Hobza P (2013) Acc Chem Res 46:927–936

    Article  CAS  PubMed  Google Scholar 

  3. Molčanov K, Kojić-Prodić B (2019) IUCrJ 6:156–166

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neel AJ, Hilton MJ, Sigman MS, Toste FD (2017) Nature 543:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steed JW, Atwood JL (2009) Supramolecular Chemistry, 2nd ed J Wiley & sons

  6. Tiekink RT, Zukerman-Schpector J, Eds. (2012) The importance of π-interactions in crystal engineering, Wiley

  7. Salonen LM, Ellermann M, Diederich F (2011) Angew Chem Int Ed 50:4808–4842

    Article  CAS  Google Scholar 

  8. Makwana KM, Mahalakshmi R (2015) Protein Sci 24:1920–1933

    Article  Google Scholar 

  9. Mak CH (2016) J Phys Chem B 120:6010–6020

    Article  CAS  PubMed  Google Scholar 

  10. Hobza P, Selzle HL, Schlag EW (1994) J Am Chem Soc 116:3500–3506

    Article  CAS  Google Scholar 

  11. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

    Article  CAS  PubMed  Google Scholar 

  12. Hill JG, Platts JA, Werner HJ (2006) Phys Chem Chem Phys 8:4072–4078

    Article  CAS  PubMed  Google Scholar 

  13. Sinnokrot MO, Sherrill CD (2006) J Phys Chem A 110:10656–10668

    Article  CAS  PubMed  Google Scholar 

  14. Grimme S (2003) J Chem Phys 118:9095–9102

    Article  CAS  Google Scholar 

  15. Grimme S (2008) Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

  16. Bloom JWG, Wheeler SE (2011) Angew Chem Int Ed 50:7847–7849

    Article  CAS  Google Scholar 

  17. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  18. Sinnokrot MO, Sherrill CD (2004) J Am Chem Soc 126:7690–7697

    Article  CAS  PubMed  Google Scholar 

  19. Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446–3457

    Article  CAS  PubMed  Google Scholar 

  20. Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854–10855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arnstein SA, Sherrill CD (2008) Phys Chem Chem Phys 10:2646–2655

    Article  CAS  PubMed  Google Scholar 

  22. Ringer AL, Sherrill CD (2009) J Am Chem Soc 131:4574–4575

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler SE (2011) J Am Chem Soc 133:10262–10274

    Article  CAS  PubMed  Google Scholar 

  24. Hohenstein EG, Duan J, Sherrill CD (2011) J Am Chem Soc 133:13244–13247

    Article  CAS  PubMed  Google Scholar 

  25. Raju RK, Bloom JWG, Wheeler SE (2013) J Chem Theory Comput 9:3479–3490

    Article  CAS  PubMed  Google Scholar 

  26. Parrish RM, Sherrill CD (2014) J Am Chem Soc 136:17386–17389

    Article  CAS  PubMed  Google Scholar 

  27. Hunter CA, Low CMR, Vinter JG, Zonta C (2003) J Am Chem Soc 125:9936–9937

    Article  CAS  PubMed  Google Scholar 

  28. Cockroft SL, Hunter CA, Lawson KR, Perkins J, Urch CJ (2005) J Am Chem Soc 127:8594–8595

    Article  CAS  PubMed  Google Scholar 

  29. Stenlid JH, Johansson AJ, Brinck T (2018) Phys Chem Chem Phys 20:2676–2692

    Article  Google Scholar 

  30. Stenlid JH, Brinck T (2017) J Am Chem Soc 139:11012–11015

    Article  CAS  PubMed  Google Scholar 

  31. Frontera A, Bauzá A (2018) Chem Eur J 24:7228–7234

    Article  CAS  PubMed  Google Scholar 

  32. Piña M, Frontera A, Bauzá A (2020) J Phys Chem Lett 11:8259–8263

    Article  PubMed  Google Scholar 

  33. Ulloa CO, Ponce-Vargas M, Muñoz-Castro A (2018) J Phys Chem C 122:25110–25117

    Article  CAS  Google Scholar 

  34. Bauzá A, Frontera A (2018) Inorganics 6:64–74

    Article  Google Scholar 

  35. Reina M, Martinez A (2018) Comput Theor Chem 1130:15–23

    Article  CAS  Google Scholar 

  36. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Phys Chem Chem Phys 20:22498–22509

    Article  CAS  PubMed  Google Scholar 

  37. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  38. Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW (2010) Phys Rev B 81:081408–081411

    Article  Google Scholar 

  39. Toyoda K, Hamada I, Lee K, Yanagisawa S, Morikawa Y (2010) J Chem Phys 132:134703–134711

    Article  PubMed  Google Scholar 

  40. Wellendorff J, Kelkkanen A, Mortensen JJ, Lundqvist BI, Bligaard T (2010) Top Catal 53:378–383

    Article  CAS  Google Scholar 

  41. Abad E, Dappe YJ, Martínez JI, Flores F, Ortega J (2011) J Chem Phys 134:044701–044708

    Article  CAS  PubMed  Google Scholar 

  42. Yildirim H, Greber T, Kara A (2013) J Phys Chem C 117:20572–20583

    Article  CAS  Google Scholar 

  43. Pekӧz R, Johnston K (2014) Donadio D 118:6235–6241

    Google Scholar 

  44. Miller DP, Simpson S, Tymińska N, Zurek E (2015) J Chem Phys 142:101924–101936

    Article  PubMed  Google Scholar 

  45. Gruene P, Butschke B, Lyon JT, Rayner DM, Fielicke A (2014) Z Phys Chem 228:337–350

    Article  CAS  Google Scholar 

  46. Baek H, Moon J, Kim J (2017) J Phys Chem A 121:2410–2419

    Article  CAS  PubMed  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  48. Adamo C, Barone V (1999) J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  49. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  PubMed  Google Scholar 

  51. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110:709–716

    Article  CAS  PubMed  Google Scholar 

  52. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013) Phys Chem Chem Phys 15:5539–5552

    Article  CAS  PubMed  Google Scholar 

  53. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154119

    Article  PubMed  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013). Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

  55. Grimme S, Steinmetz M (2016) Phys Chem Chem Phys 18:20926–20937

    Article  CAS  PubMed  Google Scholar 

  56. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  57. Neese F (2018) WIREs Comput Mol Sci 8:1327–1332

    Article  Google Scholar 

  58. Kossmann S, Neese F (2009) Chem Phys Lett 481:240–243

    Article  CAS  Google Scholar 

  59. Lu T, Chen FW (2012) J Comp Chem 33:580–592

    Article  Google Scholar 

  60. Humphrey W, Dalke A, Schulten K (1996) J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  61. Hohenstein EG, Sherrill CD (2012). WIREs: Comp Mol Sci 2:304–326

  62. Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) J Chem Theory Comput 13:3185–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Řezáč J, Riley KE, Hobza P (2011) J Chem Theory Comput 7:2427–2438

    Article  PubMed  PubMed Central  Google Scholar 

  64. Syomin D, Kim J, Koel BE, Ellison GB (2001) J Phys Chem B 105:8387–8394

    Article  CAS  Google Scholar 

  65. Bader FW Atoms in molecules: a quantum theory (1994) Oxford University Press, New York.

  66. Lu T, Chen QX (2021) Chemistry—Methods 1:231–239

Download references

Acknowledgements

The author is grateful for the help from the High Performance Computing Center in Shandong University and to Prof. Feng in Shandong University for the reasonable advice.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhao has done all of the works in the investigation, calculation, and writing—review and editing.

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The author consents to participation.

Consent for publication

The participant consents to publication.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Substituent effects on the regium-π stacking interactions between Au6 cluster and substituted benzene. J Mol Model 27, 328 (2021). https://doi.org/10.1007/s00894-021-04944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04944-5

Keywords

Navigation