Skip to main content
Log in

Fractional nuclear charge approach to isolated anion densities for Hirshfeld partitioning methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Atoms in molecules methods that rely on reference promolecular densities typically require that one define, or otherwise determine, the densities of unbound atomic anions. Whereas the isolated atomic polyanions are always physically and computationally unbound, monoanions can be either physically bound but computationally unbound (like the oxygen anion at the Hartree-Fock level of theory), or physically unbound but computationally bound (like the nitrogen anion using many DFT methods with a basis set including diffuse functions). Depending on the level of theory and basis set used, the densities of negatively charged atomic ions can decay very slowly and even be nonmonotonically decreasing. These delocalized anionic densities induce ill-behaved atomic properties for compounds containing highly reduced atoms. To treat the problem of unphysical proatom densities in iterative Hirshfeld methods, we compute the smallest (typically fractional) nuclear charge to bind all electrons, called the effective nuclear charge \( {Z}_{\mathrm{A}}^{\mathrm{eff}} \) of an atom A. When \( {Z}_{\mathrm{A}}^{\mathrm{eff}}>{Z}_{\mathrm{A}} \) at a given level of theory, the scaled density corresponding to the effective nuclear charge is used as the negatively charged proatom density. This novel approach dramatically improves the computational robustness of the iterative Hirshfeld partitioning scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bultinck P, Popelier PLA (2009) Atoms in molecules and population analysis. In: Chattaraj PK (Ed) Theory of chemical reactivity. Taylor and Francis, London, pp 215–227

  2. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  3. Heidarzadeh F, Shahbazian S (2011) The quantum divided basins: a new class of quantum subsystems. Int J Quantum Chem 111(12):2788–2801

    Article  CAS  Google Scholar 

  4. Zadeh FH, Shahbazian S (2010) Toward a fuzzy atom view within the context of the quantum theory of atoms in molecules: quasi-atoms. Theor Chem Accounts 128(2):175–181

    Article  Google Scholar 

  5. Okabe A, Boots B, Sugihara K, Chiu SN, Kendall DG (2008) Spatial tessellations: concepts and applications of voronoi diagrams. In: Spatial tessellations, second edn. Wiley, New York

  6. Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88(4):2547–2553

    Article  CAS  Google Scholar 

  7. Politzer P, Harris RR (1970) Electronic density distribution in nitric oxide. J Am Chem Soc 92(7):1834–1836

    Article  CAS  Google Scholar 

  8. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  9. Bultinck P, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126(14):144111

    Article  Google Scholar 

  10. Verstraelen T, Vandenbrande S, Heidar-Zadeh F, Vanduyfhuys L, Van Speybroeck V, Waroquier M, Ayers PW (2016) Minimal basis iterative stockholder: atoms in molecules for force-field development. J Chem Theory Comput 12(8):3894–3912

    Article  CAS  Google Scholar 

  11. Geldof D, Krishtal A, Blockhuys F, Van Alsenoy C (2011) An extension of the Hirshfeld method to open Shell systems using fractional occupations. J Chem Theory Comput 7(5):1328–1335

    Article  CAS  Google Scholar 

  12. Ghillemijn D, Bultinck P, Van Neck D, Ayers PW (2011) A self-consistent Hirshfeld method for the atom in the molecule based on minimization of information loss. J Comput Chem 32(8):1561–1567

    Article  CAS  Google Scholar 

  13. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J Chem Theory Comput 9(5):2221–2225

    Article  CAS  Google Scholar 

  14. Lillestolen TC, Wheatley RJ (2008) Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chem Commun 45:5909

    Article  Google Scholar 

  15. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2012) The conformational sensitivity of iterative stockholder partitioning schemes. Chem Phys Lett 545:138–143

    Article  CAS  Google Scholar 

  16. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv 6(53):47771–47801

    Article  CAS  Google Scholar 

  17. Politzer P (1970) Atom promotion and bond properties in the hydrogen and the lithium molecules. Theor Chim Acta 16(2):120–125

    Article  CAS  Google Scholar 

  18. Politzer P, Leung KC, Elliott JD, Peters SK (1975) Properties of atoms in molecules. Theor Chim Acta 38(2):101–107

    Article  CAS  Google Scholar 

  19. Politzer P, Reggio PH (1972) Properties of atoms in molecules. IV. Atomic charges in some linear polyatomic molecules. J Am Chem Soc 94(24):8308–8311

    Article  CAS  Google Scholar 

  20. Politzer P (1971) Properties of atoms in molecules. Theor Chim Acta 23(2):203–207

    Article  CAS  Google Scholar 

  21. Francisco E, Pendas AM, Blanco MA, Costales A (2007) Comparison of direct and flow integration based charge density population analyses. J Phys Chem A 111(48):12146–12151

    Article  CAS  Google Scholar 

  22. Davidson ER, Chakravorty S (1992) A test of the Hirshfeld definition of atomic charges and moments. Theor Chim Acta 83(5–6):319–330

    Article  CAS  Google Scholar 

  23. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105(31):7391–7400

    Article  CAS  Google Scholar 

  24. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97(16):8879–8882

    Article  CAS  Google Scholar 

  25. Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys 113(24):10886–10898

    Article  CAS  Google Scholar 

  26. Heidar-Zadeh F, Ayers PW (2015) How pervasive is the Hirshfeld partitioning? J Chem Phys 142(4):044107

    Article  Google Scholar 

  27. Heidar-Zadeh F, Ayers PW, Bultinck P (2014) Deriving the Hirshfeld partitioning using distance metrics. J Chem Phys 141(9)"094103

  28. Heidar-Zadeh F, Vinogradov I, Ayers PW (2017) Hirshfeld partitioning from non-extensive entropies. Theor Chem Accounts 136(4):54

    Article  Google Scholar 

  29. Heidar-Zadeh F, Ayers PW (2017) Fuzzy atoms in molecules from Bregman divergences. Theor Chem Accounts 136(8):92

    Article  Google Scholar 

  30. Bultinck P, Ayers PW, Fias S, Tiels K, Van Alsenoy C (2007) Uniqueness and basis set dependence of iterative Hirshfeld charges. Chem Phys Lett 444(1–3):205–208

    Article  CAS  Google Scholar 

  31. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694

    Article  CAS  Google Scholar 

  32. Yang W, Zhang Y, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172–5175

    Article  CAS  Google Scholar 

  33. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303

    Article  CAS  Google Scholar 

  34. Ayers PW, Levy M (2000) Perspective on "density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Accounts 103:353–360

    Article  CAS  Google Scholar 

  35. Verstraelen T, Van Speybroeck V, Waroquier M (2009) The electronegativity equalization method and the split charge equilibration applied to organic systems: parametrization, validation, and comparison. J Chem Phys 131(4):044127

  36. Verstraelen T, Pauwels E, De Proft F, Van Speybroeck V, Geerlings P, Waroquier M (2012) Assessment of atomic charge models for gas-phase computations on polypeptides. J Chem Theory Comput. 8(2):661–676

    Article  CAS  Google Scholar 

  37. Van Damme S, Bultinck P, Fias S (2009) Electrostatic potentials from self-consistent Hirshfeld atomic charges. J Chem Theory Comput 5(2):334–340

    Article  Google Scholar 

  38. Weinstein H, Politzer P, Srebrenik S (1975) A misconception concerning the electronic density distribution of an atom. Theor Chim Acta 38(2):159–163

    Article  CAS  Google Scholar 

  39. Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6(51):45727–45747

    Article  CAS  Google Scholar 

  40. Vanpoucke DEP, Bultinck P, Cottenier S, Van Speybroeck V, Van Driessche I (2011) DFT study of La2Ce2O7: distorted fluorite versus pyrochlore structure. Phys Rev B 84:054110

    Article  Google Scholar 

  41. Chakravorty SJ, Davidson ER (1996) Refinement of the asymptotic Z expansion for the ground-state correlation energies of atomic ions. J Phys Chem 100(15):6167–6172

    Article  CAS  Google Scholar 

  42. Hogreve H (1998) On the maximal electronic charge bound by atomic nuclei. J Phys B:At Mol Opt Phys 31:L439–L446

    Article  CAS  Google Scholar 

  43. Hogreve H (1998) Destabilization of atomic anions: the case of F- and O2. Phys Scr 58(1):25

  44. Sergeev AV, Kais S (1999) Critical nuclear charges for N-electron atoms. Int J Quantum Chem 75(4–5):533–542

    Article  CAS  Google Scholar 

  45. Kais S, Serra P (2000) Quantum critical phenomena and stability of atomic and molecular ions. Int Rev Phys Chem 19(1):97–121

    Article  CAS  Google Scholar 

  46. Kais S, Serra P (2003) Finite-size scaling for atomic and molecular systems. Adv Chem Phys 125:1–99

  47. Cárdenas C, Heidar-Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. Phys Chem Chem Phys 18(36):25721–25734

    Article  Google Scholar 

  48. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10(2):151–177

    Article  Google Scholar 

  49. Steiner E (1963) Charge Densities in Atoms. J Chem Phys 39(9):2365–2366

    Article  CAS  Google Scholar 

  50. Levy M, Perdew JP (1985) Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys Rev A 32(4):2010–2021

    Article  CAS  Google Scholar 

  51. Wilson Jr EB (1962) Four-dimensional electron density function. J Chem Phys 36(8):2232–2233

    Article  CAS  Google Scholar 

  52. Politzer P, Lane P, Concha MC (2002) Atomic and molecular energies in terms of electrostatic potentials at nuclei. Int J Quantum Chem 90(1):459–463

    Article  Google Scholar 

  53. Politzer P, Jalbout AF, Jin P (2003) Some approximate atomic and molecular energy formulas. Collect Czechoslov Chem Commun 68(1):61–74

    Article  CAS  Google Scholar 

  54. Politzer P (2004) Atomic and molecular energies as functionals of the electrostatic potential. Theor Chem Accounts 111(2):395–399

    Article  CAS  Google Scholar 

  55. Amovilli C, March NH (2017) Variational quantum Monte Carlo results for N2, N2+ and C2– utilising the four-dimensional density of bright Wilson. Phys Chem Liq 55(3):281–290

    Article  CAS  Google Scholar 

  56. Politzer P, Levy M (1987) Energy differences from electrostatic potentials at nuclei. J Chem Phys 87(8):5044–5046

    Article  CAS  Google Scholar 

  57. Politzer P (1988) Correction. J Chem Phys 89(4):2590–2590

    Article  CAS  Google Scholar 

  58. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  60. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. PCCP 10(44):6615

    Article  CAS  Google Scholar 

  61. Dunning TH (1989) Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB et al.(2009) Gaussian 09 revision C.01. Gaussian Inc., Wallingford CT

  63. Verstraelen T, Tecmer P, Heidar-Zadeh F, Boguslawski K, Chan M, Zhao Y, Kim TD, Vandenbrande S, Yang D, González-Espinoza GE, Fias S, Limacher PA, Berrocal D, Malek A, Ayers PW (2015) HORTON 2.0.0. http://theochem.github.com/horton/

  64. Heidar-Zadeh F, Richer M, Fias S, Miranda-Quintana RA, Chan M, Franco-Perez M, Gonzalez-Espinoza CE, Kim TD, Lanssens C, Patel AHG, Yang XD, Vohringer-Martinez E, Cardenas C, Verstraelen T, Ayers PW (2016) An explicit approach to conceptual density functional theory descriptors of arbitrary order. Chem Phys Lett 660:307–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are happy to recognize Prof. dr. Politzer as the grandfather of the Hirshfeld/stockholder partitioning method, and more generally as the leading authority on the mathematical and chemical properties of the electron density and the closely related electrostatic potential. Without his many novel and insightful contributions in this arena, this paper would not be possible, and the research of these three authors would be greatly impoverished.

PB acknowledges the Scientific Research Foundation − Flanders (FWO-Vlaanderen) for continuous support. FHZ was supported by a Vanier-CGS fellowship from NSERC and a Ghent University Scholarship for a Joint Doctorate. PWA and FHZ acknowledge support from NSERC, Compute Canada, and the Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul W. Ayers or Patrick Bultinck.

Additional information

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift

Electronic supplementary material

The AIM charges plotted in Figs. 1 and 2 are tabulated in the supplementary Tables S1-S4.

ESM 1

(PDF 122 kb)

Appendix

Here we demonstrate how density is scaled to have the right cusp according to Eq. (10). The exact cusp relation for the N A-electron ground-state electron density of an atom with charge \( {Z}_{\mathrm{A}}^{\mathrm{eff}} \)is

$$ -2{Z}_{\mathrm{A}}^{\mathrm{eff}}={\left[\frac{1}{\rho_{\mathrm{A}}\left(r,\theta, \phi; {N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right)}\frac{\partial {\rho}_{\mathrm{A}}\left(r,\theta, \phi; {N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right)}{\partial r}\right]}_{r=0} $$
(14)

Scaling the density according to Eq. (10) fixes the cusp condition,

$$ {\displaystyle \begin{array}{l}{\left[\frac{1}{{\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}\right)}^3{\rho}_{\mathrm{A}}\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}r,\theta, \phi, {N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right)}\frac{\partial {\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}\right)}^3{\rho}_{\mathrm{A}}\left(\frac{Z_A}{Z_A^{\mathrm{eff}}}r,\theta, \phi, {N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right)}{\partial r}\right]}_{r=0}\\ {}=-2{Z}_{\mathrm{A}}^{\mathrm{eff}}\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}\right)\\ {}=-2{Z}_{\mathrm{A}}\end{array}} $$
(15)
while maintaining the normalization of the electron density, i.e.,
$$ {\displaystyle \begin{array}{l}{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}\right)}^3{\rho}_{\mathrm{A}}\left(\frac{Z_A}{Z_A^{\mathrm{eff}}}x,\frac{Z_A}{Z_A^{\mathrm{eff}}}y,\frac{Z_A}{Z_A^{\mathrm{eff}}}z,{N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right) dxdydz\\ {}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\rho}_{\mathrm{A}}\left(\frac{Z_A}{Z_A^{\mathrm{eff}}}x,\frac{Z_A}{Z_A^{\mathrm{eff}}}y,\frac{Z_A}{Z_A^{\mathrm{eff}}}z,{N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right)d\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}x\right)d\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}y\right)d\left(\frac{Z_{\mathrm{A}}}{Z_{\mathrm{A}}^{\mathrm{eff}}}z\right).\\ {}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{\rho}_{\mathrm{A}}\left(X,Y,Z,{N}_{\mathrm{A}};{Z}_{\mathrm{A}}^{\mathrm{eff}}\right) dXdYdZ\\ {}={N}_A\end{array}} $$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidar-Zadeh, F., Ayers, P.W. & Bultinck, P. Fractional nuclear charge approach to isolated anion densities for Hirshfeld partitioning methods. J Mol Model 23, 348 (2017). https://doi.org/10.1007/s00894-017-3514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3514-6

Keywords

Navigation