Skip to main content
Log in

Hirshfeld partitioning from non-extensive entropies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We show that the statistical divergence measures associated with non-extensive thermodynamic entropy functions—specifically the Tsallis, Réyni, Sharma–Mittal, supraextensive, and H-divergences—are associated with the Hirshfeld atoms-in-molecules partitioning. This extends the treatment of Nalewajski and Parr (J Phys Chem A 109:3957–3959, 2005), (for the extensive Shannon entropy) to non-extensive entropy measures. It also extends the work of Heidar-Zadeh and Ayers (J Chem Phys 142(4):044107, 2015), (for divergence measures that are local density functionals) to non-local functionals. These results dramatically extend the mathematical framework that one can use for similarity-based atoms-in-molecules partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  2. Matta CF, Bader RFW (2006) An experimentalist’s reply to “What is an atom in a molecule?”. J Phys Chem A 110:6365–6371

    Article  CAS  Google Scholar 

  3. Bader RFW, Nguyendang TT (1981) Quantum-theory of atoms in molecules: Dalton revisited. Adv Quantum Chem 14:63–124

    Article  CAS  Google Scholar 

  4. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  5. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  6. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. HarperCollins, New York

    Google Scholar 

  7. Cardenas C, Heidar-Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. PCCP 18(36):25721–25734. doi:10.1039/c6cp04533b

    Article  CAS  Google Scholar 

  8. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  9. Nalewajski RF, Switka E, Michalak A (2002) Information distance analysis of molecular electron densities. Int J Quantum Chem 87(4):198–213

    Article  CAS  Google Scholar 

  10. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105(31):7391–7400

    Article  CAS  Google Scholar 

  11. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97:8879–8882

    Article  CAS  Google Scholar 

  12. Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys 113:10886–10898

    Article  CAS  Google Scholar 

  13. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  14. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

    Google Scholar 

  15. Heidarzadeh F, Shahbazian S (2011) The quantum divided basins: a new class of quantum subsystems. Int J Quantum Chem 111:2788–2801. doi:10.1002/qua.22629

    Article  CAS  Google Scholar 

  16. Heidar Zadeh F, Shahbazian S (2011) Toward a fuzzy atom view within the context of the quantum theory of atoms in molecules: quasi-atoms. Theor Chem Acc 128(2):175–181. doi:10.1007/s00214-010-0811-x

    Article  CAS  Google Scholar 

  17. Kullback S (1997) Information theory and statistics. Dover, Mineola

    Google Scholar 

  18. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  19. Gadre SR, Sears SB, Chakravorty SJ, Bendale RD (1985) Some novel characteristics of atomic information entropies. Phys Rev A 32:2602–2606

    Article  CAS  Google Scholar 

  20. Sears SB, Gadre SR (1981) An information theoretic synthesis and analysis of Compton profiles. J Chem Phys 75(9):4626–4635

    Article  CAS  Google Scholar 

  21. Acharya PK, Bartolotti LJ, Sears SB, Parr RG (1980) An atomic kinetic energy functional with full Weizsacker correction. Proc Natl Acad Sci 77:6978–6982

    Article  CAS  Google Scholar 

  22. Sears SB, Parr RG, Dinur U (1980) On the quantum-mechanical kinetic energy as a measure of the information in a distribution. Isr J Chem 19(1–4):165–173

    Article  CAS  Google Scholar 

  23. Sears SB (1980) University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

  24. Heidar-Zadeh F, Fuentealba P, Cardenas C, Ayers PW (2014) An information-theoretic resolution of the ambiguity in the local hardness. PCCP 16(13):6019–6026. doi:10.1039/c3cp52906a

    Article  CAS  Google Scholar 

  25. Kaplan H, Levine RD, Manz J (1976) Microscopic reversibility and probability matrices for molecular collisions—information theoretic synthesis. Mol Phys 31(6):1765–1782. doi:10.1080/00268977600101401

    Article  CAS  Google Scholar 

  26. Procaccia I, Levine RD (1976) Cross-sections for rotational energy transfer—an information-theoretic synthesis. J Chem Phys 64(2):808–817. doi:10.1063/1.432227

    Article  CAS  Google Scholar 

  27. Jensen CC, Steinfeld JI, Levine RD (1978) Information theoretic analysis of multi-photon excitation and collisional deactivation in polyatomic molecules. J Chem Phys 69(4):1432–1439. doi:10.1063/1.436757

    Article  CAS  Google Scholar 

  28. Levine RD (1978) Information-theory approach to molecular reaction dynamics. Annu Rev Phys Chem 29:59–92. doi:10.1146/annurev.pc.29.100178.000423

    Article  CAS  Google Scholar 

  29. Alhassid Y, Levine RD, Karp JS, Steadman SG (1979) Information-theoretic analysis of energy disposal in heavy-ion transfer-reactions. Phys Rev C 20(5):1789–1813. doi:10.1103/PhysRevC.20.1789

    Article  CAS  Google Scholar 

  30. Levine RD (1980) Information theoretical approach to inversion problems. J Phys A Math Gen 13(1):91–108. doi:10.1088/0305-4470/13/1/011

    Article  Google Scholar 

  31. Zamir E, Haas Y, Levine RD (1980) Laser enhanced addition-reactions between hydrogen halides and unsaturated hydrocarbons—an information theoretic approach. J Chem Phys 73(6):2680–2687. doi:10.1063/1.440481

    Article  CAS  Google Scholar 

  32. Alhassid Y, Levine RD (1980) Experimental and inherent uncertainties in the information theoretic approach. Chem Phys Lett 73(1):16–20. doi:10.1016/0009-2614(80)85192-x

    Article  CAS  Google Scholar 

  33. Engel YM, Levine RD, Thoman JW, Steinfeld JI, McKay R (1988) Information theoretic analysis of quantal fluctuations in fluorescence lifetimes. J Phys Chem 92(19):5497–5500. doi:10.1021/j100330a032

    Article  CAS  Google Scholar 

  34. Levine RD (1990) The chemical shape of molecules—an introduction to dynamic stereochemistry. J Phys Chem 94(26):8872–8880. doi:10.1021/j100389a006

    Article  CAS  Google Scholar 

  35. Levine RD (1998) Monte Carlo, maximum entropy and importance sampling. Chem Phys 228(1–3):255–264. doi:10.1016/s0301-0104(97)00334-0

    Article  CAS  Google Scholar 

  36. Gross A, Levine RD (2006) A mechanical representation of entropy for a large finite system. J Chem Phys. doi:10.1063/1.2357149

    Google Scholar 

  37. Remacle F, Levine RD (2009) The elimination of redundant constraints in surprisal analysis of unimolecular dissociation and other endothermic processes. J Phys Chem A 113(16):4658–4664. doi:10.1021/jp811463h

    Article  CAS  Google Scholar 

  38. Graeber TG, Heath JR, Skaggs BJ, Phelps ME, Remacle F, Levine RD (2010) Maximal entropy inference of oncogenicity from phosphorylation signaling. Proc Natl Acad Sci 107(13):6112–6117. doi:10.1073/pnas.1001149107

    Article  CAS  Google Scholar 

  39. Remacle F, Kravchenko-Balasha N, Levitzki A, Levine RD (2010) Information-theoretic analysis of phenotype changes in early stages of carcinogenesis. Proc Natl Acad Sci 107(22):10324–10329. doi:10.1073/pnas.1005283107

    Article  CAS  Google Scholar 

  40. Kravchenko-Balasha N, Remacle F, Gross A, Rotter V, Levitzki A, Levine RD (2011) Convergence of logic of cellular regulation in different premalignant cells by an information theoretic approach. BMC Syst Biol. doi:10.1186/1752-0509-5-42

    Google Scholar 

  41. Shin YS, Remacle F, Fan R, Hwang K, Wei W, Ahmad H, Levine RD, Heath JR (2011) Protein signaling networks from single cell fluctuations and information theory profiling. Biophys J 100(10):2378–2386. doi:10.1016/j.bpj.2011.04.025

    Article  CAS  Google Scholar 

  42. Remacle F, Graeber TG, Levine RD (2011) Whose entropy: a maximal entropy analysis of phosphorylation signaling. J Stat Phys 144(2):429–442. doi:10.1007/s10955-011-0215-x

    Article  Google Scholar 

  43. Gross A, Levine RD (2013) Surprisal analysis of transcripts expression levels in the presence of noise: a reliable determination of the onset of a tumor phenotype. PLoS ONE. doi:10.1371/journal.pone.0061554

    Google Scholar 

  44. Zadran S, Remacle F, Levine RD (2013) miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proc Natl Acad Sci 110(47):19160–19165. doi:10.1073/pnas.1316991110

    Article  CAS  Google Scholar 

  45. Kravchenko-Balasha N, Wang J, Remacle F, Levine RD, Heath JR (2014) Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc Natl Acad Sci 111(17):6521–6526. doi:10.1073/pnas.1404462111

    Article  CAS  Google Scholar 

  46. Zadran S, Arumugam R, Herschman H, Phelps ME, Levine RD (2014) Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. Proc Natl Acad Sci 111(36):13235–13240. doi:10.1073/pnas.1414714111

    Article  CAS  Google Scholar 

  47. Kravchenko-Balasha N, Simon S, Levine RD, Remacle F, Exman I (2014) Computational surprisal analysis speeds-up genomic characterization of cancer processes. PLoS ONE. doi:10.1371/journal.pone.0108549

    Google Scholar 

  48. Kravchenko-Balasha N, Shin YS, Sutherland A, Levine RD, Heath JR (2016) Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement. Proc Natl Acad Sci 113(20):5520–5525. doi:10.1073/pnas.1602171113

    Article  CAS  Google Scholar 

  49. Levine RD, Bernstein RB (1974) Energy consumption and energy disposal in elementary chemical reactions: The information theoretic approach. Acc Chem Res 7:393

    Article  CAS  Google Scholar 

  50. Levine RD (2005) Molecular reaction dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  51. Liu SB (2016) Information-theoretic approach in density functional reactivity theory. Acta Phys Chim Sin 32(1):98–118. doi:10.3866/pkumhxb201510302

    Google Scholar 

  52. Liu SB, Rong CY, Lu T (2014) Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity. J Phys Chem A 118(20):3698–3704. doi:10.1021/jp5032702

    Article  CAS  Google Scholar 

  53. Godo B, Nagy A (2016) Fisher information and Rényi dimensions: a thermodynamical formalism. Chaos. doi:10.1063/1.4959908

    Google Scholar 

  54. Nagy A (2013) Shannon entropy density as a descriptor of Coulomb systems. Chem Phys Lett 556:355–358. doi:10.1016/j.cplett.2012.11.065

    Article  CAS  Google Scholar 

  55. Nagy A (2015) Fisher and Shannon information in orbital-free density functional theory. Int J Quantum Chem 115(19):1392–1395. doi:10.1002/qua.24812

    Article  CAS  Google Scholar 

  56. Nagy A, Romera E (2009) Relative Rényi entropy for atoms. Int J Quantum Chem 109(11):2490–2494. doi:10.1002/qua.21962

    Article  CAS  Google Scholar 

  57. Nagy A, Romera E (2009) Maximum Rényi entropy principle and the generalized Thomas–Fermi model. Phys Lett A 373(8–9):844–846. doi:10.1016/j.physleta.2009.01.004

    Article  CAS  Google Scholar 

  58. Nagy A, Romera E (2014) Fisher and Shannon information from one-matrix. Link to the kinetic energy. Chem Phys Lett 597:139–142. doi:10.1016/j.cplett.2014.02.032

    Article  CAS  Google Scholar 

  59. Nagy A, Romera E, Liu SB (2013) Local coordinate, wave vector, Fisher and Shannon information in momentum representation. Phys Lett A 377(3–4):286–290. doi:10.1016/j.physleta.2012.11.018

    Article  CAS  Google Scholar 

  60. Ayers PW, Parr RG, Nagy A (2002) Local kinetic energy and local temperature in the density-functional theory of electronic structure. Int J Quantum Chem 90(1):309–326. doi:10.1002/qua.989

    Article  CAS  Google Scholar 

  61. Chattaraj PK, Chamorro E, Fuentealba P (1999) Chemical bonding and reactivity: a local thermodynamic viewpoint. Chem Phys Lett 314(1–2):114–121. doi:10.1016/s0009-2614(99)01114-8

    Article  CAS  Google Scholar 

  62. Nagy A, Parr RG (1994) Density-functional theory as thermodynamics. Proc Indian Acad Sci Chem Sci 106(2):217–227

    CAS  Google Scholar 

  63. Nagy A, Parr RG (1996) Information entropy as a measure of the quality of an approximate electronic wave function. Int J Quantum Chem 58(4):323–327. doi:10.1002/(sici)1097-461x(1996)58:4<323:aid-qua1>3.3.co;2-t

    Article  CAS  Google Scholar 

  64. Nagy A, Parr RG (2000) Remarks on density functional theory as a thermodynamics. J Mol Struct THEOCHEM 501:101–106

    Article  Google Scholar 

  65. Nagy A, Sen KD (2006) Atomic Fisher information versus atomic number. Phys Lett A 360(2):291–293. doi:10.1016/j.physleta.2006.08.025

    Article  CAS  Google Scholar 

  66. Romera E, Nagy A (2008) Rényi information of atoms. Phys Lett A 372(29):4918–4922. doi:10.1016/j.physleta.2008.05.029

    Article  CAS  Google Scholar 

  67. Liu SB (2015) Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge. J Phys Chem A 119(12):3107–3111. doi:10.1021/acs.jpca.5b00443

    Article  CAS  Google Scholar 

  68. Wu WJ, Wu ZM, Rong CY, Lu T, Huang Y, Liu SB (2015) Computational study of chemical reactivity using information-theoretic quantities from density functional reactivity theory for electrophilic aromatic substitution reactions. J Phys Chem A 119(29):8216–8224. doi:10.1021/acs.jpca.5b04309

    Article  CAS  Google Scholar 

  69. Wu ZM, Rong CY, Lu T, Ayers PW, Liu SB (2015) Density functional reactivity theory study of S(N)2 reactions from the information-theoretic perspective. PCCP 17(40):27052–27061. doi:10.1039/c5cp04442a

    Article  CAS  Google Scholar 

  70. Rong CY, Lu T, Ayers PW, Chattaraj PK, Liu SB (2015) Scaling properties of information-theoretic quantities in density functional reactivity theory. PCCP 17(7):4977–4988. doi:10.1039/c4cp05609d

    Article  CAS  Google Scholar 

  71. Liu SB (2014) Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution. J Chem Phys. doi:10.1063/1.4901898

    Google Scholar 

  72. Zhou X-Y, Rong C-Y, Lu T, Liu S-B (2014) Hirshfeld charge as a quantitative measure of electrophilicity and nucleophilicity: nitrogen-containing systems. Acta Phys Chim Sin 30(11):2055–2062. doi:10.3866/pku.whxb201409193

    CAS  Google Scholar 

  73. Liu SB, Rong CY, Wu ZM, Lu T (2015) Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory. Acta Phys Chim Sin 31(11):2057–2063. doi:10.3866/pku.whxb201509183

    CAS  Google Scholar 

  74. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  75. Verstraelen T, Vandenbrande S, Heidar-Zadeh F, Vanduyfhuys L, Van Speybroeck V, Waroquier M, Ayers PW (2016) Minimal basis iterative stockholder: atoms in molecules for force-field development. J Chem Theory Comp 12(8):3894–3912. doi:10.1021/acs.jctc.6b00456

    Article  CAS  Google Scholar 

  76. Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111. doi:10.1063/1.2715563

    Article  CAS  Google Scholar 

  77. Bultinck P, Ayers PW, Fias S, Tiels K, Van Alsenoy C (2007) Uniqueness and basis set dependence of iterative Hirshfeld charges. Chem Phys Lett 444:205–208

    Article  CAS  Google Scholar 

  78. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J Chem Theory Comput 9:2221–2225

    Article  CAS  Google Scholar 

  79. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2014) Extended Hirshfeld: atomic charges that combine accurate electrostatics with transferability. Abstr Pap Am Chem Soc 247:1

    Google Scholar 

  80. Ghillemijn D, Bultinck P, Van Neck D, Ayers PW (2011) A self-consistent Hirshfeld method for the atom in the molecule based on minimization of information loss. J Comput Chem 32:1561–1567. doi:10.1002/jcc.21734

    Article  CAS  Google Scholar 

  81. Manz TA, Sholl DS (2010) Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J Chem Theory Comput 6(8):2455–2468. doi:10.1021/ct100125x

    Article  CAS  Google Scholar 

  82. Manz TA, Sholl DS (2012) Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J Chem Theory Comput 8(8):2844–2867. doi:10.1021/ct3002199

    Article  CAS  Google Scholar 

  83. Lillestolen TC, Wheatley RJ (2009) Atomic charge densities generated using an iterative stockholder procedure. J Chem Phys 131:144101. doi:10.1063/1.3243863

    Article  CAS  Google Scholar 

  84. Lillestolen TC, Wheatley RJ (2008) Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chem Commun 45:5909–5911. doi:10.1039/b812691g

    Article  CAS  Google Scholar 

  85. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2012) The conformational sensitivity of iterative stockholder partitioning schemes. Chem Phys Lett 545:138–143. doi:10.1016/j.cplett.2012.07.028

    Article  CAS  Google Scholar 

  86. Lee LP, Limas NG, Cole DJ, Payne MC, Skylaris CK, Manz TA (2014) Expanding the scope of density derived electrostatic and chemical charge partitioning to thousands of atoms. J Chem Theory Comput 10(12):5377–5390. doi:10.1021/ct500766v

    Article  CAS  Google Scholar 

  87. Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6(51):45727–45747. doi:10.1039/c6ra05507a

    Article  CAS  Google Scholar 

  88. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv 6(53):47771–47801. doi:10.1039/c6ra04656h

    Article  CAS  Google Scholar 

  89. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8(2):527–541. doi:10.1021/ct200866d

    Article  CAS  Google Scholar 

  90. Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc 115:370–378

    Article  CAS  Google Scholar 

  91. Heidar-Zadeh F, Ayers PW, Bultinck P (2014) Deriving the Hirshfeld partitioning using distance metrics. J Chem Phys 141:094103

    Article  CAS  Google Scholar 

  92. Heidar-Zadeh F, Ayers PW (2015) How pervasive is the Hirshfeld partitioning? J Chem Phys 142(4):044107. doi:10.1063/1.4905123

    Article  CAS  Google Scholar 

  93. Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52(1–2):479–487

    Article  Google Scholar 

  94. Nielsen F, Nock R (2011) On the Rényi and Tsallis entropies and divergences for exponential families. arXiv:1105.3259

  95. Lenzi EK, Mendes RS, da Silva LR (2000) Statistical mechanics based on Rényi entropy. Phys A 280(3–4):337–345

    Article  Google Scholar 

  96. Réyni A (1960) On measures of information and entropy. In: Proceedings of the fourth Berkeley symposium on mathematics, statistics, and probability, pp 547–561

  97. Nielsen F, Nock R (2012) A closed-form expression for the Sharma–Mittal entropy of exponential families. J Phys A Math Theor. doi:10.1088/1751-8113/45/3/032003

    Google Scholar 

  98. Gupta HC, Sharma BD (1976) On non-additive measures of inaccuracy. Czechoslov Math J 26:584–595

    Google Scholar 

  99. Sharma BD, Taneja IJ (1975) Entropy of type (alpha, beta) and other generalized measures in information theory. Metrika 22:205–215

    Article  Google Scholar 

  100. Sharma BD, Mittal DP (1975) New nonadditive measures of entropy for discrete probability distributions. J Math Sci 10:28–40

    Google Scholar 

  101. Sharma BD, Mittal DP (1977) New nonadditive measures of relative information. J Comb Inf Syst Sci 2:122–132

    Google Scholar 

  102. Masi M (2005) A step beyond Tsallis and Rényi entropies. Phys Lett A 338(3–5):217–224. doi:10.1016/j.physleta.2005.01.094

    Article  CAS  Google Scholar 

  103. Esteban MD, Morales D (1995) A summary on entropy statistics. Kybernetika 31(4):337–346

    Google Scholar 

  104. Tsekouras GA, Tsallis C (2005) Generalized entropy arising from a distribution of q indices. Phys Rev E. doi:10.1103/PhysRevE.71.046144

    Google Scholar 

  105. Liu MZ, Vemuri BC, Amari SI, Nielsen F (2010) Total Bregman divergence and its applications to shape retrieval. In: 2010 IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Los Alamitos, pp 3463–3468. doi:10.1109/cvpr.2010.5539979

  106. Nielsen F, Nock R (2015) Total Jensen divergences: definition, properties, and clustering. In: 2015 IEEE international conference on acoustics, speech, and signal processing. International conference on acoustics speech and signal processing ICASSP, pp 2016–2020

  107. Nock R, Nielsen F, Amari SI (2016) On conformal divergences and their population minimizers. IEEE Trans Inf Theory 62(1):527–538. doi:10.1109/tit.2015.2448072

    Article  Google Scholar 

  108. Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J R Stat Soc Ser B Methodol 28:131–142

    Google Scholar 

  109. Morimoto T (1963) Markov processes and the H-theorem. J Phys Soc Jpn 18:328–331

    Article  Google Scholar 

  110. Csiszár I (1963) Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Magyar Tud Akad Mat Kutato Int Kozl 8:85–108

    Google Scholar 

  111. Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann Math Stat 23:493–507

    Article  Google Scholar 

  112. Dunlap BI, Rosch N, Trickey SB (2010) Variational fitting methods for electronic structure calculations. Mol Phys 108:3167–3180. doi:10.1080/00268976.2010.518982

    Article  CAS  Google Scholar 

  113. Dunlap BI (2000) Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry. J Mol Struct THEOCHEM 529:37–40

    Article  CAS  Google Scholar 

  114. Dunlap BI (2000) Robust variational fitting: Gaspar’s variational exchange can accurately be treated analytically. J Mol Struct THEOCHEM 501:221–228

    Article  Google Scholar 

  115. Dunlap BI (2000) Robust and variational fitting. PCCP 2(10):2113–2116

    Article  CAS  Google Scholar 

  116. Dunlap BI, Connolly JWD, Sabin JR (1979) Some approximations in applications of X-alpha theory. J Chem Phys 71(8):3396–3402

    Article  CAS  Google Scholar 

  117. Parr RG, Bartolotti LJ (1983) Some remarks on the density functional theory of few-electron systems. J Phys Chem 87:2810–2815

    Article  CAS  Google Scholar 

  118. Ayers PW (2000) Density per particle as a descriptor of Coulombic systems. Proc Natl Acad Sci 97:1959–1964

    Article  CAS  Google Scholar 

  119. Ayers PW, Cedillo A (2009) The shape function. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 269

    Google Scholar 

  120. De Proft F, Ayers PW, Sen KD, Geerlings P (2004) On the importance of the “density per particle” (shape function) in the density functional theory. J Chem Phys 120:9969–9973

    Article  CAS  Google Scholar 

  121. Borgoo A, Godefroid M, Indelicato P, De Proft F, Geerlings P (2007) Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. J Chem Phys 126(4):044102. doi: 10.1063/1.2428295

    Article  CAS  Google Scholar 

  122. Sen KD, De Proft F, Borgoo A, Geerlings P (2005) N-derivative of Shannon entropy of shape function for atoms. Chem Phys Lett 410(1–3):70–76

    Article  CAS  Google Scholar 

  123. Borgoo A, Godefroid M, Sen KD, De Proft F, Geerlings P (2004) Quantum Similarity of atoms: a numerical Hartree–Fock and information theory approach. Chem Phys Lett 399(4–6):363–367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank NSERC and Compute Canada for funding. FHZ acknowledges support from Vanier-CGS fellowship and Ghent University Scholarship for a Joint Doctorate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farnaz Heidar-Zadeh or Paul W. Ayers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidar-Zadeh, F., Vinogradov, I. & Ayers, P.W. Hirshfeld partitioning from non-extensive entropies. Theor Chem Acc 136, 54 (2017). https://doi.org/10.1007/s00214-017-2077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2077-z

Keywords

Navigation