Skip to main content

Advertisement

Log in

Comparative theoretical studies of differently bridged nitramino-substituted ditetrazole 2-N-oxides with high detonation performance and an oxygen balance of around zero

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, six (A–F) nitramino (–NHNO2)-substituted ditetrazole 2-N-oxides with different bridging groups (–CH2–, –CH2–CH2–, –NH–, –N=N–, and –NH–NH–) were designed. The six compounds were based on the parent compound tetrazole 2-N-oxide, which possesses a high oxygen balance and high density. The structure, heat of formation, density, detonation properties (detonation velocity D and detonation pressure P), and the sensitivity of each compound was investigated systematically via density functional theory, by studying the electrostatic potential, and using molecular mechanics. The results showed that compounds A–F all have outstanding energetic properties (D: 9.1–10.0 km/s; P: 38.0–46.7 GPa) and acceptable sensitivities (h 50: 28–37 cm). The bridging group present was found to greatly affect the detonation performance of each ditetrazole 2-N-oxide, and the compound with the –NH–NH– bridging group yielded the best results. Indeed, this compound (F) was calculated to have comparable sensitivity to the famous and widely used high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), but with values of D and P that were about 8.7% and 19.4% higher than those for HMX, respectively. The present study shows that tetrazole 2-N-oxide is a useful parent compound which could potentially be used in the design of new and improved high-energy compounds to replace existing energetic compounds such as HMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang MX, Eaton PE, Gilardi R (2000) Angew Chem Int Ed 39:401–404

    Article  CAS  Google Scholar 

  2. Wu Q, Zhu WH, Xiao HM (2014) J Mater Chem A 2:13006–13015

    Article  CAS  Google Scholar 

  3. Göbel M, Karaghiosoff K, Klapötke TM, Piercey DG, Stierstorfer J (2010) J Am Chem Soc 132:17216–17226

    Article  Google Scholar 

  4. Klapötke TM, Piercey DG, Stierstorfer J (2011) Chem Eur J 17:13068–13077

    Article  Google Scholar 

  5. Harel T, Rozen S (2010) J Org Chem 75:3141–3143

    Article  CAS  Google Scholar 

  6. Fischer N, Gao L, Klapçtke TM, Stierstorfer J (2013) Polyhedron 51:201–210

    Article  CAS  Google Scholar 

  7. Song X, Li J, Hou H, Wang B (2009) J Comput Chem 30:1816–1820

    Article  CAS  Google Scholar 

  8. He P, Zhang JG, Wang K, Yin X, Zhang TL (2015) J Org Chem 80:5643–5651

    Article  CAS  Google Scholar 

  9. Jia Y, Xin PL, Chao YZ (2016) J Phys Chem A 120:9446–9457

    Article  Google Scholar 

  10. Wei PL, Peng L, Zhong XG, Ying ZL, Tao Y, Jian L (2016) J Mol Model 22:83

    Article  Google Scholar 

  11. Politzer P, Murray JS (2017) Struct Chem 1–19

  12. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) J Hazard Mater 157:605–612

    Article  Google Scholar 

  13. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Pyrotech 22:249–255

    Article  CAS  Google Scholar 

  14. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  15. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  16. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  17. Byrd EFC, Rice BM (2006) J Phys Chem A 199:1005–1013

    Article  Google Scholar 

  18. PospĺŠil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  19. PospĺŠil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  20. Politzer P, Murray JS (2014) J Mol Model 20:2223–2230

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A.01. Gaussian, Inc., Wallingford

  22. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS (2015) J Mol Model 21:262

    Article  Google Scholar 

  24. Singh HJ, Upadhyaya MK (2013) J Energ Mater 31:301

    Article  CAS  Google Scholar 

  25. Wang GX, Shi CH, Gong XD, Zhu WH, Xiao HM (2009) J Hazard Mater 169:813–818

    Article  CAS  Google Scholar 

  26. Wang F, Du HC, Zhang JY (2011) J Phys Chem A 115:11788–11795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Foundation of the Nanjing Institute of Technology (YKJ201507, CKJA201603), the National Natural Science Foundation of China (NSFC21603102) and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Ethics declarations

Funding

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Kou, B., Hang, Z. et al. Comparative theoretical studies of differently bridged nitramino-substituted ditetrazole 2-N-oxides with high detonation performance and an oxygen balance of around zero. J Mol Model 23, 186 (2017). https://doi.org/10.1007/s00894-017-3359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3359-z

Keywords

Navigation