Skip to main content

Advertisement

Log in

Theoretical studies on the stability, detonation performance and possibility of synthesis of the nitro derivatives of epoxyethane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Compounds with heterocyclic rings and NO2 groups have drawn much attention as high energy density compounds in recent years. In this study, the nitro derivatives 1–4 of epoxyethane (ETO) were investigated, and their synthetic possibilities in thermodynamics and thermal stability were predicted. The trigger bond for 1, 2 and 3 is the C–C bond, but for 4 it is the C–NO2 bond. The bond dissociation energies (E BDs) were estimated to be 205.40–164.86 kJ mol−1 and h 50s were 53–126 cm. E BD, h 50 and energy gap all decrease from 1 to 4. A linear relationship exists between the strain energy and the number of the NO2 group. Derivative 2 has a zero oxygen balance and possesses the best detonation properties (D = 8.77 km s−1 and P = 33.88 GPa) as a single explosive. Derivatives 3 and 4 used as oxidizers in the composite explosives of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) produce very good detonation performance (D = 9.36 km s−1, P = 40.15 GPa and I s = 281.56 s for 3/RDX, and D = 9.45 km s−1, P = 41.04 GPa and I s = 280.34 s for 4/RDX). The intermolecular hydrogen bonding and dispersion interactions of 3/RDX and 4/RDX show that the compatibilities of these composites are acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahm M, Brinck T (2010) Kinetic stability and propellant performance of green energetic materials. Chem-Eur J 16(22):6590–6600

    CAS  Google Scholar 

  2. Klapötke TM, Krumm B, Moll R, Rest SF (2011) CHNO based molecules containing 2,2,2-trinitroethoxy moieties as possible high energy dense oxidizers. Z Anorg Allg Chem 637(14–15):2103–2110

    Article  Google Scholar 

  3. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2):289–305

    Article  CAS  Google Scholar 

  4. Sikder A, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1):1–15

    Article  CAS  Google Scholar 

  5. Cui J, Han J, Wang J, Huang R (2010) Study on the crystal structure and hygroscopicity of ammonium dinitramide. J Chem Eng Data 55(9):3229–3234

    Article  CAS  Google Scholar 

  6. de Klerk WP, van der Heijden AE, Veltmans WH (2001) Thermal analysis of the high-energetic material HNF. J Therm Anal Calorim 64(3):973–985

    Article  Google Scholar 

  7. Dendage P, Sarwade D, Asthana S, Singh H (2001) Hydrazinium nitroformate (HNF) and HNF based propellants: a review. J Energ Mater 19(1):41–78

    Article  CAS  Google Scholar 

  8. Archibald T, Gilardi R, Baum K, George C (1990) Synthesis and X-ray crystal structure of 1, 3, 3-trinitroazetidine. J Org Chem 55(9):2920–2924

    Article  CAS  Google Scholar 

  9. McKenney RL Jr, Floyd TG, Stevens WE, Archibald TG, Marchand AP, Sharma G, Bott SG (1998) Synthesis and thermal properties of 1, 3-dinitro-3-(1′, 3′-dinitroazetidin-3′-yl) azetidine (TNDAZ) and its admixtures with 1, 3, 3-trinitroazetidine (TNAZ). J Energ Mater 16(1):1–22

    Article  CAS  Google Scholar 

  10. Hiskey MA, Johnson MC, Chavez DE (1999) Preparation of 1-substituted-3, 3-dinitroazetidines. J Energ Mater 17(2–3):233–252

    Article  CAS  Google Scholar 

  11. Zhang J, Hu R, Zhu C, Feng G, Long Q (1997) Thermal behavior of 1, 3, 3-trinitroazetidine. Thermochim Acta 298(1):31–35

    Article  CAS  Google Scholar 

  12. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384(1):187–204

    Article  CAS  Google Scholar 

  13. Coburn MD, Hiskey MA, Archibald TG (1998) Scale-up and waste-minimization of the Los Alamos process for 1, 3, 3-trinitroazetidine (TNAZ). Waste Manag 17(2):143–146

    Article  Google Scholar 

  14. Hayashi K, Kumagai T, Nagao Y (2000) Improved Synthesis of an Energetic Material, 1, 1, 3-Trinitroazetidine Exploiting 1-Azabicyclo [1.1. 0] butane. Heterocycles 53(2):447–452

    Article  CAS  Google Scholar 

  15. Coburn MD, Lee K-y (1988) 3-nitro-1, 2, 4-triazol-5-one, a less sensitive explosive. Google Patents

  16. Archibald T, Garver L, Baum K, Cohen M (1989) Synthesis of polynitrocyclobutane derivatives. J Org Chem 54(12):2869–2873

    Article  CAS  Google Scholar 

  17. Ivshin V, Komelin M, Tartakovskii V (1999) Synthesis of ()-trans-1, 2, 3-tris (nitroamino) cyclopropane. Russ J Org Chem 35(3):466–467

    CAS  Google Scholar 

  18. Chi W, Li L, Li B, Wu H (2012) Density functional calculation on a high energy density compound having the formula C2OH4− n (NO2) n. Struct Chem 23(6):1837–1841

    Article  CAS  Google Scholar 

  19. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA TV Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  21. Takano Y, Houk K (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1(1):70–77

    Google Scholar 

  22. Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, Weinhold F (2001) NBO 5.0. NBO,Version 50,Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  23. Liu S (2009) Some recent developments in conceptual density functional theory. Chin J Chem Phys 3:590–600

    Google Scholar 

  24. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  25. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    Article  CAS  Google Scholar 

  26. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  Google Scholar 

  27. Benson SW (1976) Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  28. Yao XQ, Hou XJ, Wu GS, Xu YY, Xiang HW, Jiao H, Li YW (2002) Estimation of CC bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods. J Phys Chem A 106(31):7184–7189

    CAS  Google Scholar 

  29. Shao J, Cheng X, Yang X (2005) Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J Mol Struc-theochem 755(1):127–130

    Article  CAS  Google Scholar 

  30. Fan XW, Ju XH, Xia QY, Xiao HM (2008) Strain energies of cubane derivatives with different substituent groups. J Hazard Mater 151(1):255–260

    Article  CAS  Google Scholar 

  31. Xu XJ, Zhu WH, Gong XD, Xiao HM (2008) Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid. Sci China Ser B Chem 51(5):427–439

    Article  CAS  Google Scholar 

  32. Wang F, Du HC, Zhang JY, Gong XD (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115(42):11788–11795

    CAS  Google Scholar 

  33. Rice BM, Pai SV, Hare J (1999) Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust Flame 118(3):445–458

    Article  CAS  Google Scholar 

  34. Chase MW Jr (1998) NIST-JANAF Themochemical Tables, Fourth Edition. J Phys Chem Ref Data Monogr 9:1–1951

    Google Scholar 

  35. Dean JA (ed) (1999) Lange’s chemistry handbook. McGraw-Hill, New York

    Google Scholar 

  36. Politzer P, Lane P, Murray JS (2011) Computational characterization of a potential energetic compound: 1, 3, 5, 7-tetranitro-2, 4, 6, 8-tetraazacubane. Cent Eur J Energ Mater 8(1):39–52

    CAS  Google Scholar 

  37. Kamlet MJ, Jacobs SJ (1986) A simple method for calculating detonation properties of C-H -N -O explosives. J Chem Phys 48:23–25

    Google Scholar 

  38. Politzer P, Murray JS, Grice ME, Sjoberg P (eds) (1991) Computer-aided design of monopropellants, in Chemistry of energetic materials. Academic, San Diego

    Google Scholar 

  39. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  40. O Y (2006) Explosives. Beijing Institute of Technology Press

  41. Owens F (1996) Calculation of energy barriers for bond rupture in some energetic molecules. J Mol Struc-theochem 370(1):11–16

    Article  CAS  Google Scholar 

  42. Rice BM, Sahu S, Owens FJ (2002) Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J Mol Struc-theochem 583(1):69–72

    Article  CAS  Google Scholar 

  43. Xu XJ, Zhu WH, Xiao HM (2008) Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J Mol Struc-theochem 853(1):1–6

    CAS  Google Scholar 

  44. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  45. Liu H, Wang F, Wang G-X, Gong X-D (2012) Theoretical studies of-NH2 and-NO2 substituted dipyridines. J Mol Model 18(10):4639–4647

    Article  CAS  Google Scholar 

  46. George P, Trachtman M, Bock CW, Brett AM (1976) An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons. Tetrahedron 32(3):317–323

    Article  CAS  Google Scholar 

  47. Walker J, Adamson P, Davis S (1999) Comparison of calculated hydrocarbon strain energies using ab initio and composite methods. J Mol Struc-theochem 487(1):145–150

    Article  CAS  Google Scholar 

  48. Lewis LL, Turner LL, Salter EA, Magers DH (2002) Computation of the conventional strain energy in oxaziridine. J Mol Struc-theochem 592(1):161–171

    Article  CAS  Google Scholar 

  49. Fan XW, Ju XH (2008) Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J Comput Chem 29(4):505–513

    Article  CAS  Google Scholar 

  50. Cremer D, Kraka E (1985) Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bonds, ring strain, and surface delocalization. J Am Chem Soc 107(13):3800–3810

    Article  CAS  Google Scholar 

  51. Eckhardt CJ, Gavezzotti A (2007) Computer simulations and analysis of structural and energetic features of some crystalline energetic materials. J Phys Chem B 111(13):3430–3437

    CAS  Google Scholar 

  52. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20(5):1–8

    Article  CAS  Google Scholar 

  53. Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos J (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097

    Article  CAS  Google Scholar 

  54. Ju X-H, Wang Z-Y, Yan X-F, Xiao H-M (2007) Density functional theory studies on dioxygen difluoride and other fluorine/oxygen binary compounds: availability and shortcoming. J Mol Struc-theochem 804(1):95–100

    Article  CAS  Google Scholar 

  55. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2):589–607

    Article  CAS  Google Scholar 

  56. Zhang Z, Wang B, Ji Y, Zhou Y, Zhou C, Liu Q, Zhu C (2008) Domestic research progress in part of new high energy density materials. Chinese J Explos Propell 31(2):93–97

    CAS  Google Scholar 

  57. Liu J, Yang Y, Xin W (2009) Computational investigation on energy characteristics of propellant contains 1, 3, 3-trinitroazetidine. J Solid Rocket Technol 32(3):318–322

    CAS  Google Scholar 

  58. Wang F, H-c D, Zhang J-Y, Gong X-D (2011) Comparative theoretical studies of energetic azo s-triazines. J Phys Chem A 115(42):11852–11860

    CAS  Google Scholar 

  59. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Google Scholar 

  60. Li J, Fan X, Fan X, Zhao F, Hu R (2006) Compatibility study of 1, 3, 3-trinitroazetidinewith some energetic components and inert materials. J Therm Anal Calorim 85(3):779–784

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X. Theoretical studies on the stability, detonation performance and possibility of synthesis of the nitro derivatives of epoxyethane. J Mol Model 20, 2327 (2014). https://doi.org/10.1007/s00894-014-2327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2327-0

Keywords

Navigation