Skip to main content

Advertisement

Log in

Functional nanocomposites and their potential applications: A review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, the review aims to compile some reportable work of researchers carried concerning the use of nanomaterials in the polymeric composites for significant improvements in the properties and to report the application areas of such nanocomposites. Carbon nanotubes, cellulose nanoparticles, titanium dioxide, and other nanoparticles are used in the polymeric composites to enhance their mechanical, electrical, inter-laminar, optical, chemical, electrochemical, electromagnetic shielding, and ballistic properties. Such nanocomposites have a wide range of applications in structural, biomedical, electronics, automobiles, aircraft, oil pipelines, gas pipeline construction, electromagnetic shielding, and protected areas. According to the reported results of researchers, the incorporation of nanomaterials into polymers significantly enhance their properties, which make them able to widen their application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tyagi M, Tyagi D (2014) Polymer nanocomposites and their applications in electronics industry. Int J Electron Electr Eng 7(6):603–608

    Google Scholar 

  2. Bhattacharyya D, Singh S, Satnalika N (2009) Nanotechnology, Big things from a Tiny World : a Review. Sci Technol 2(3):29–38

    Google Scholar 

  3. Purohit K, Khitoliya P, Purohit R (2012) Recent advances in nanotechnology based drug. 3(11):1–11

  4. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114(19):10131–10176. https://doi.org/10.1021/cr400625j

    Article  CAS  PubMed  Google Scholar 

  5. Marquis DM, Guillaume É, Chivas-joly C (2005) Properties of Nano fi llers in Polymer. Nanocomposites Polym with Anal Methods. 261. https://doi.org/10.5772/21694

  6. Njuguna J, Ansari F, Sachse S, Zhu H, Rodriguez VM (2014) Nanomaterials, nanofillers, and nanocomposites: Types and properties, Heal Environ Saf Nanomater Polym Nancomposites Other Mater Contain Nanoparticles. 3–27. https://doi.org/10.1533/9780857096678.1.3

  7. Al-Haik M et al (2010) Hybrid carbon fibers/carbon nanotubes structures for next generation polymeric composites. J Nanotechnol https://doi.org/10.1155/2010/860178

  8. Sang L, Zhao Y, Burda C (2014) TiO 2 Nanoparticles as Functional Building Blocks. Chem Rev 114(19):9283–9318. https://doi.org/10.1021/cr400629p

    Article  CAS  PubMed  Google Scholar 

  9. Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114(19):9487–9558. https://doi.org/10.1021/cr500201c

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chem Rev 116(18):10983–11060. https://doi.org/10.1021/acs.chemrev.5b00731

    Article  CAS  PubMed  Google Scholar 

  11. Pavlovic M, Mayfield J, Balint B (2013) Nanotechnology and its application in medicine. Handb Med Healthc Technol 4(10):181–205. https://doi.org/10.1007/978-1-4614-8495-0_7

    Article  Google Scholar 

  12. Rallini M, Kenny JM (2017) 3 Nanofillers in Polymers Elsevier Inc.

  13. Over H (2012) Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem Rev 112(6):3356–3426. https://doi.org/10.1021/cr200247n

    Article  CAS  PubMed  Google Scholar 

  14. Okpala DCC (2014) the Benefits and Applications of Nanocomposites. Int J Adv Eng Technol 5(4):12–18. https://doi.org/10.1017/S0022226700013931

    Article  Google Scholar 

  15. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 6(8):2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  16. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114(19):9319–9345. https://doi.org/10.1021/cr500170p

    Article  CAS  PubMed  Google Scholar 

  17. Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem Rev 116(6):3594–3657. https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  18. Yang Z et al (2015) Recent Advancement of Nanostructured Carbon for Energy Applications. Chem Rev 115(11):5159–5223. https://doi.org/10.1021/cr5006217

    Article  CAS  PubMed  Google Scholar 

  19. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US (2016) Polymer-Based Organic Batteries. Chem Rev 116(16):9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070

    Article  CAS  PubMed  Google Scholar 

  20. Hildebrandt K, Mitschang P (2011) Effect of Incorporating Nanoparticles in Thermoplastic Fiber-Reinforced Composites on the Electrical Conductivity. Iccm 18:1–4

    Google Scholar 

  21. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: From synthesis to modern applications. 3(6)

  22. Bal S, Samal S (2007) Carbon nanotube reinforced polymer composites—A state of the art. Bull Mater Sci 30(4):379–386. https://doi.org/10.1007/s12034-007-0061-2

    Article  CAS  Google Scholar 

  23. Hsu HC et al (2012) Stand-up structure of graphene-like carbon nanowalls on CNT directly grown on polyacrylonitrile-based carbon fiber paper as supercapacitor. Diam Relat Mater 25:176–179. https://doi.org/10.1016/j.diamond.2012.02.020

    Article  CAS  Google Scholar 

  24. Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem Rev 114(19):9346–9384. https://doi.org/10.1021/cr400633s

    Article  CAS  PubMed  Google Scholar 

  25. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem Rev 114(19):9385–9454. https://doi.org/10.1021/cr500061m

    Article  PubMed  Google Scholar 

  26. McGinn R (2010) Ethical responsibilities of nanotechnology researchers: A short guide. Nanoethics 4(1):1–12. https://doi.org/10.1007/s11569-010-0082-y

    Article  Google Scholar 

  27. Wang W, Zhu YH, Liao SS, Li JJ (2014) Carbon Nanotubes Reinforced Composites for Biomedical Applications. Biomed Res Int 2014:14. https://doi.org/10.1155/2014/518609

    Article  CAS  Google Scholar 

  28. Georgakilas V et al (2016) Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev 116(9):5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  CAS  PubMed  Google Scholar 

  29. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862. https://doi.org/10.1021/cr500177a

    Article  CAS  PubMed  Google Scholar 

  30. Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2014) Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev 114(23):11619–11635. https://doi.org/10.1021/cr5000915

    Article  CAS  PubMed  Google Scholar 

  31. Stan A et al (2011) Epoxy-Layered Silicate and Epoxy MWCNTs Nanocomposites. Appl Mech Mater 146:160–169. https://doi.org/10.4028/www.scientific.net/AMM.146.160

    Article  CAS  Google Scholar 

  32. Breuer O, Sundararaj U (2004) A review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645. https://doi.org/10.1002/pc.20058

    Article  CAS  Google Scholar 

  33. Reddy MV, Subba Rao GV, Chowdari BVR (2013) “Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries.” Chem Rev 113(7):5364–5457. https://doi.org/10.1021/cr3001884

    Article  CAS  PubMed  Google Scholar 

  34. Baughman RH (2002) “Carbon Nanotubes — the Route Toward.” Science (80-.) 297(787):787–792. https://doi.org/10.1126/science.1060928

    Article  CAS  Google Scholar 

  35. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A Appl Sci Manuf 41(10):1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  36. Fischer H (2003) Polymer nanocomposites: From fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772. https://doi.org/10.1016/j.msec.2003.09.148

    Article  CAS  Google Scholar 

  37. Henrique P, Camargo C, Satyanarayana KG, Wypych F (2009) Nanocomposites : Synthesis, Structure, Properties and New Application Opportunities. Mater Res 12(1):1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  Google Scholar 

  38. Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem Rev 115(16):8896–8943. https://doi.org/10.1021/acs.chemrev.5b00255

    Article  CAS  PubMed  Google Scholar 

  39. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: A review. Compos Sci Technol 68(6):1227–1249. https://doi.org/10.1016/j.compscitech.2008.01.006

    Article  CAS  Google Scholar 

  40. Cristina B, Ion D, Adriana S, George P (2012) Nanocomposites as Advanced Materials for Aerospace Industry. Incas Bull 4(4):57–72. https://doi.org/10.13111/2066-8201.2012.4.4.6

    Article  Google Scholar 

  41. Sonawane GH, Patil SP, Sonawane SH (2018) Nanocomposites and Its Applications. Elsevier Ltd.

  42. Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH (2013) Biocompatible materials for continuous glucose monitoring devices. Chem Rev 113(4):2528–2549. https://doi.org/10.1021/cr300387j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt G (2003) Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:145–155. https://doi.org/10.1016/S1359-0294

    Article  Google Scholar 

  44. Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114(19):10044–10094. https://doi.org/10.1021/cr4006796

    Article  CAS  PubMed  Google Scholar 

  45. Gacitua W, Ballerini A, Zhang J (2005) Polymer Nanocomposites: Synthetic and Natural Fillers a Review. Maderas Cienc y Tecnol 7(3):159–178. https://doi.org/10.4067/S0718-221X2005000300002

    Article  Google Scholar 

  46. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: A review. Chem Eng J 170(2–3):381–394. https://doi.org/10.1016/j.cej.2011.02.071

    Article  CAS  Google Scholar 

  47. Mouritz A, Gibson A (2006) Fire properties of polymer composite materials.

  48. Habibnejad-Korayem M, Mahmudi R, Poole WJ (2009) Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng A 519(1–2):198–203. https://doi.org/10.1016/j.msea.2009.05.001

    Article  CAS  Google Scholar 

  49. Yemul O, Ramanand S, Marathwada T (2013) Biodegradable Bioepoxy Resin from Mahua oil SRTMU ’ s. Research Journal of Science Biodegradable Bioepoxy Resin from Mahua oil

  50. Zanetti Marco L (2000) Sergei, and Camino Giovanni, Polymer Layered Silicate Nanocomposites. Macromol Mater Eng 279(6):1–9. https://doi.org/10.1002/1439-2054(20000601)279:1<1::aid-mame1>3.0.co;2-q

    Article  Google Scholar 

  51. Giannelis E (1996) Polymer layered silicate nanocomposites. Adv Mater 1:29–35. https://doi.org/10.1002/adma.19960080104

    Article  Google Scholar 

  52. David L, Bhandavat R, Barrera U, Singh G (2015) Polymer-derived ceramic functionalized MoS2composite paper as a stable lithium-ion battery electrode. Sci Rep 5:1–7. https://doi.org/10.1038/srep09792

    Article  CAS  Google Scholar 

  53. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: A brief overview. Chem Mater 12(3):608–622. https://doi.org/10.1021/cm990537f

    Article  CAS  Google Scholar 

  54. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites - A review. Mater Sci Eng A 393(1–2):1–11. https://doi.org/10.1016/j.msea.2004.09.044

    Article  CAS  Google Scholar 

  55. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials : a review. Compos Sci Technol 61:1189–1224. https://doi.org/10.1016/S0266-3538(00)00241-4

    Article  CAS  Google Scholar 

  56. Rahman IA, Padavettan V (2012) Synthesis of Silica Nanoparticles by Sol-Gel : Size-Dependent Properties , Surface Modification , and Applications in Silica-Polymer Nanocomposites — A Review https://doi.org/10.1155/2012/132424

  57. Kanjilal A et al (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl Phys Lett 82(8):1212–1214. https://doi.org/10.1063/1.1555709

    Article  CAS  Google Scholar 

  58. Obradovic V et al (2014) Ballistic Properties of Hybrid Thermoplastic Composites with Silica Nanoparticles. J Eng Fiber Fabr 9(4):97–107

    Google Scholar 

  59. Blix PEM (1975) United States Patent (19). 19:3–8. https://doi.org/10.1016/j.(73)

  60. Hasan MM, Zhou Y, Mahfuz H, Jeelani S (2006) Effect of SiO2nanoparticle on thermal and tensile behavior of nylon-6. Mater Sci Eng A 429(1–2):181–188. https://doi.org/10.1016/j.msea.2006.05.124

    Article  CAS  Google Scholar 

  61. Moaddeb M, Koros WJ (1997) Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Memb Sci 125(1):143–163. https://doi.org/10.1016/S0376-7388(96)00251-7

    Article  CAS  Google Scholar 

  62. Bahadur S, Schwartz CJ The influence of nanoparticle fillers in polymer matrices on the formation and stability of transfer film during wear.

  63. Kord B (2012) Effect of nanoparticles loading on properties of polymeric composite based on Hemp Fiber/Polypropylene. J Thermoplast Compos Mater 25(7):793–806. https://doi.org/10.1177/0892705711412815

    Article  CAS  Google Scholar 

  64. Najafi A, Kord B, Abdi A, Ranaee S (2012) The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J Thermoplast Compos Mater 25(6):717–727. https://doi.org/10.1177/0892705711412813

    Article  CAS  Google Scholar 

  65. Uthaman N, Majeed A, Pandurangan (2006) Fabrication and Applications of Cellulose Nanoparticle-Based Polymer Composites. E-Polymers 1–9. https://doi.org/10.1002/pen

  66. Erenkov OY, Igumnov PV, Nikishechkin VL (2010) Mechanical properties of polymer composites. Russ Eng Res 30(4):373–375. https://doi.org/10.3103/S1068798X1004012X

    Article  Google Scholar 

  67. Sathyanarayana S, Hübner C (2013) Structural Nanocomposites. 

  68. Sathyanarayana S, Hübner C (2013) Thermoplastic Nanocomposites with Carbon Nanotubes.

  69. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852. https://doi.org/10.1002/adma.200702559

    Article  CAS  Google Scholar 

  70. Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Reports Prog Phys 64(1):1. http://stacks.iop.org/0034-4885/64/i=1/a=201

  71. Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer (Guildf) 49(15):3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  72. Diez Pascual AM, Luceño Sanchez J, Peña Capilla R, Garcia Diaz P (2018) Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers (Basel) 10(2):217. https://doi.org/10.3390/polym10020217

  73. Small CE et al (2011) High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nat Photonics 6:115. https://doi.org/10.1038/nphoton.2011.317

  74. Dosch JJ, Inman DJ, Garcia E (1992) A Self-Sensing Piezoelectric Actuator for Collocated Control. J Intell Mater Syst Struct 3(1):166–185. https://doi.org/10.1177/1045389X9200300109

    Article  Google Scholar 

  75. Luo J, Krause B, Pötschke P (2016) Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications. AIMS Mater Sci 3(3):1107–1116. https://doi.org/10.3934/matersci.2016.3.1107

    Article  CAS  Google Scholar 

  76. Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8(12):4428–4432. https://doi.org/10.1021/nl802345s

    Article  CAS  PubMed  Google Scholar 

  77. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841. https://doi.org/10.1016/j.progpolymsci.2011.11.003

    Article  CAS  Google Scholar 

  78. McGrail BT, Sehirlioglu A, Pentzer E (2015) Polymer composites for thermoelectric applications. Angew Chemie - Int Ed 54(6):1710–1723. https://doi.org/10.1002/anie.201408431

    Article  CAS  Google Scholar 

  79. Das L, Basu JK (2015) Photocatalytic treatment of textile effluent using titania-zirconia nano composite catalyst. J Ind Eng Chem 24:245–250. https://doi.org/10.1016/j.jiec.2014.09.037

    Article  CAS  Google Scholar 

  80. Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2013) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B - Condens Matter Mater Phys  67(11):12. https://doi.org/10.1103/PhysRevB.67.115326

  81. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11(15):1281–1285. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15%3c1281::AID-ADMA1281%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  82. Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials (Basel) 7(4):2747–2771. https://doi.org/10.3390/ma7042747

    Article  CAS  Google Scholar 

  83. Huynh WU, Peng X, Alivisatos AP (1999) CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Adv Mater 11(11):923–927. https://doi.org/10.1002/(SICI)1521-4095(199908)11:11%3c923::AID-ADMA923%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  84. Weinberg MS (1999) Working equations for piezoelectric actuators and sensors. J Microelectromechanical Syst 8(4):529–533. https://doi.org/10.1109/84.809069

    Article  Google Scholar 

  85. Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf) 43(10):2981–2992. https://doi.org/10.1016/S0032-3861(02)00120-9

    Article  CAS  Google Scholar 

  86. Chen F et al (2011) Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase. Dalt Trans 40(41):10857–10864. https://doi.org/10.1039/c1dt10374a

    Article  CAS  Google Scholar 

  87. Sahay R, Reddy VJ, Ramakrishna S (2014) Synthesis and applications of multifunctional composite nanomaterials. Int J Mech Mater Eng 9(1):1–13. https://doi.org/10.1186/s40712-014-0025-4

    Article  Google Scholar 

  88. Wang C, Irudayaraj J (2010) Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6(2):283–289. https://doi.org/10.1002/smll.200901596

    Article  CAS  PubMed  Google Scholar 

  89. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3):459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  90. Schmidt H (2001) Nanoparticles by chemical synthesis, processing to materials and innovative applications. Appl Organomet Chem 15(5):331–343. https://doi.org/10.1002/aoc.169

    Article  CAS  Google Scholar 

  91. Wang DY et al (2009) Double in situ approach for the preparation of polymer nanocomposite with multi-functionality. Nanoscale Res Lett 4(4):303–306. https://doi.org/10.1007/s11671-008-9242-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetatebutyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30

    Article  CAS  Google Scholar 

  93. Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78(13):2242–2253. https://doi.org/10.1002/1097-4628(20001220)78:13%3c2242::AID-APP20%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  94. Kalia S et al (2011) Cellulose-based bio- and nanocomposites: A review, Int J Polym Sci. https://doi.org/10.1155/2011/837875

  95. Misra AKMM, Seydibeyoglu MO (2010) Multifunctional Structural Green Nanocomposites: An Overview 1–12.

  96. Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers Part I: Processing and Mechanical Behavior. Polym Compos 17(4):604–611

    Article  CAS  Google Scholar 

  97. Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whisker. Part 11: Effect of Processing and Modeling. Polym Compos 18(2):198–210. https://doi.org/10.1002/pc.10650

    Article  CAS  Google Scholar 

  98. Ellis TS, D’Angelo JS (2003) Thermal and mechanical properties of a polypropylene nanocomposite. J Appl Polym Sci 90(6):1639–1647. https://doi.org/10.1002/app.12830

    Article  CAS  Google Scholar 

  99. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  100. Garmendia N, Santacruz I, Moreno R, Obieta I (2010) Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing. J Mater Sci Mater Med 21(5):1445–1451. https://doi.org/10.1007/s10856-010-4023-7

    Article  CAS  PubMed  Google Scholar 

  101. Detection I et al (2011) Nanocomposites Containing Silica- Coated GoldÀSilver Nanocages and Multifunctional Capability of. 9:7077–7089.

  102. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7(4):419–431

    Article  CAS  Google Scholar 

  103. Makarchuk OV, Dontsova TA, and Astrelin IM (2016) Magnetic Nanocomposites as Efficient Sorption Materials for Removing Dyes from Aqueous Solutions. Nanoscale Res Lett 11(1). https://doi.org/10.1186/s11671-016-1364-2

  104. Ramesan MT, Jayakrishnan P (2017) Role of Nickel Oxide Nanoparticles on Magnetic, Thermal and Temperature Dependent Electrical Conductivity of Novel Poly(vinyl cinnamate) Based Nanocomposites: Applicability of Different Conductivity Models. J Inorg Organomet Polym Mater 27(1):143–153. https://doi.org/10.1007/s10904-016-0456-x

    Article  CAS  Google Scholar 

  105. Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338

    Article  CAS  PubMed  Google Scholar 

  106. Cady NC, Strickland AD, Batt CA (2007) Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol Cell Probes 21(2):116–124

    Article  CAS  PubMed  Google Scholar 

  107. Biju V, Itoh T, Baba Y, Ishikawa M (2006) Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J Phys Chem B 110(51):26068–26074

    Article  CAS  PubMed  Google Scholar 

  108. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  CAS  PubMed  Google Scholar 

  109. Ding SN, Xu JJ, Chen HY (2006) Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun 34:3631–3633. https://doi.org/10.1039/b606073k

    Article  CAS  Google Scholar 

  110. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870. https://doi.org/10.2967/jnumed.107.043216

    Article  CAS  PubMed  Google Scholar 

  111. Kim J et al (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20(3):478–483. https://doi.org/10.1002/adma.200701726

    Article  CAS  Google Scholar 

  112. Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739

    Article  CAS  PubMed  Google Scholar 

  113. Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31(11):3023–3031

    Article  CAS  PubMed  Google Scholar 

  114. Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles. Biomacromol 12(5):1641–1650

    Article  CAS  Google Scholar 

  115. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  116. Melaiye A et al (2005) Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127(7):2285–2291

    Article  CAS  PubMed  Google Scholar 

  117. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147

    Article  CAS  PubMed  Google Scholar 

  118. Fan HS, Wen XT, Tan YF, Wang R, Cao HD, Zhang XD (2005) Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro. Mater Sci Forum 475:2379–2382

    Article  Google Scholar 

  119. Kim H, Lee H, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 79(3):643–649.

  120. Kim H, Song J, Kim H (2005) Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15(12):1988–1994

    Article  CAS  Google Scholar 

  121. Lee YH et al (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26(16):3165–3172

    Article  CAS  PubMed  Google Scholar 

  122. Zhang D, Jiang C, Zhou Q (2017) Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. J Alloys Compd 711:652–658

    Article  CAS  Google Scholar 

  123. Qi W, Xue Z, Yuan W, Wang H (2014) Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. J Mater Chem B 2(3):325–331

    Article  CAS  PubMed  Google Scholar 

  124. Cui S, Yang L, Wang J, Wang X (2016) Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sensors Actuators B Chem 233:337–346

    Article  CAS  Google Scholar 

  125. Huang H et al (2016) Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 51(8):4047–4054

    Article  CAS  Google Scholar 

  126. Qi W, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2(33):5461–5467

    Article  CAS  PubMed  Google Scholar 

  127. Lian M, Fan J, Shi Z, Zhang S, Li H, Yin J (2015) Gelatin-assisted fabrication of graphene-based nacre with high strength, toughness, and electrical conductivity. Carbon N Y 89:279–289. https://doi.org/10.1016/j.carbon.2015.03.045

    Article  CAS  Google Scholar 

  128. Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly (l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22(21):10805–10815

    Article  CAS  Google Scholar 

  129. Fan H et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11(9):2345–2351

    Article  CAS  Google Scholar 

  130. Wang X, Bai H, Yao Z, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20(41):9032–9036

    Article  CAS  Google Scholar 

  131. May-Pat A, Aviles F, Toro P, Yazdani-Pedram M, Cauich-Rodriguez JV (2012) Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids. Express Polym Lett 6(2):96–106. https://doi.org/10.3144/expresspolymlett.2012.11

    Article  CAS  Google Scholar 

  132. Park JJ, Yu EJ, Lee W, Ha C (2014) Mechanical properties and degradation studies of poly (D, L-lactide-co-glycolide) 50: 50/graphene oxide nanocomposite films. Polym Adv Technol 25(1):48–54

    Article  CAS  Google Scholar 

  133. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon N Y 52:296–304. https://doi.org/10.1016/j.carbon.2012.09.031

    Article  CAS  Google Scholar 

  134. Zhang J, Zhang C, Madbouly SA (2015) In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocomposites. J Appl Polym Sci 132(13). https://doi.org/10.1002/app.41751

  135. Lalwani G et al (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromol 14(3):900–909

    Article  CAS  Google Scholar 

  136. Zhang H-B et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer (Guildf) 51(5):1191–1196

    Article  CAS  Google Scholar 

  137. Yang X, Shang S, Li L (2011) Layer-structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120(3):1355–1360

    Article  CAS  Google Scholar 

  138. Lee JS, Shin K-Y, Cheong OJ, Kim JH, Jang J (2015) Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Sci Rep 5:7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu C, Wang X, Wang J, Hu H, Wan L (2010) Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem Phys Lett 498(1–3):162–167

    Article  CAS  Google Scholar 

  140. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    Article  CAS  PubMed  Google Scholar 

  141. Lian H, Sun Z, Sun X, Liu B (2012) Graphene doped molecularly imprinted electrochemical sensor for uric acid. Anal Lett 45(18):2717–2727

    Article  CAS  Google Scholar 

  142. Heo C et al (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1):19–27

    Article  CAS  PubMed  Google Scholar 

  143. Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol 51(4):583–589

    Article  CAS  PubMed  Google Scholar 

  144. Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators B Chem 85(1–2):131–136

    Article  CAS  Google Scholar 

  145. Zhang J, Liu X, Wu S, Xu H, Cao B (2013) One-pot fabrication of uniform polypyrrole/Au nanocomposites and investigation for gas sensing. Sensors Actuators B Chem 186:695–700. https://doi.org/10.1016/j.snb.2013.06.063

    Article  CAS  Google Scholar 

  146. Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors Actuators B Chem 189:187–193

    Article  CAS  Google Scholar 

  147. Daneshkhah A, Shrestha S, Siegel A, Varahramyan K, Agarwal M (2017) Cross-selectivity enhancement of poly (vinylidene fluoride-hexafluoropropylene)-based sensor arrays for detecting acetone and ethanol. Sensors 17(3):595

    Article  Google Scholar 

  148. Rahman MA, Lee B-C, Phan D-T, Chung G-S (2013) Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater Struct 22(8):85017

    Article  CAS  Google Scholar 

  149. Rahman MA, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730

    Article  Google Scholar 

  150. Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4(85):45220–45229

    Article  CAS  Google Scholar 

  151. Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529

    Article  CAS  PubMed  Google Scholar 

  152. Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly (vinylidene fluoride) composites for improved dielectric performances. Polymer (Guildf) 103:83–97

    Article  CAS  Google Scholar 

  153. Pusty M, Sharma A, Sinha L, Chaudhary A, Shirage P (2017) Comparative study with a unique arrangement to tap piezoelectric output to realize a self poled PVDF based nanocomposite for energy harvesting applications. ChemistrySelect 2(9):2774–2782

    Article  Google Scholar 

  154. Dodds JS, Meyers FN, Loh KJ (2011) Piezoelectric characterization of PVDF-TrFE thin films enhanced with ZnO nanoparticles. IEEE Sens J 12(6):1889–1890

    Article  Google Scholar 

  155. Bhunia R et al (2016) Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl Phys A 122(7):637

    Article  Google Scholar 

  156. Peihai J, Ling W, Lizhu L, Xiaorui Z (2016) Preparation and characterisation of Al-doped ZnO and PVDF composites. High Volt 1(4):166–170

    Article  Google Scholar 

  157. Chen H-J et al (2016) Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensors Actuators A Phys 245:135–139

    Article  CAS  Google Scholar 

  158. Issa AA, Al-Maadeed MA, Luyt AS, Ponnamma D, Hassan MK (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C-Journal Carbon Res 3(4):30

  159. Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347

    Article  CAS  Google Scholar 

  160. Yang L, Qiu J, Ji H, Zhu K, Wang J (2014) Enhanced dielectric and ferroelectric properties induced by TiO2@ MWCNTs nanoparticles in flexible poly (vinylidene fluoride) composites. Compos Part A Appl Sci Manuf 65:125–134

    Article  CAS  Google Scholar 

  161. Yang L, Ji H, Zhu K, Wang J, Qiu J (2016) Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@ MWCNTs. Compos Sci Technol 123:259–267

    Article  CAS  Google Scholar 

  162. Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666

    Article  CAS  PubMed  Google Scholar 

  163. Al-Saygh A, Ponnamma D, AlMaadeed MA, Vijayan PP, Karim A, Hassan MK (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers (Basel) 9(2):33

  164. Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6(10):7547–7553

    Article  CAS  PubMed  Google Scholar 

  165. Kim JH, Ko HU (2017) Zinc oxide-cellulose nanocomposite and preparation method thereof. Google Patents 

  166. David C, Capsal J-F, Laffont L, Dantras E, Lacabanne C (2012) Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites. J Phys D Appl Phys 45(41):415305

    Article  Google Scholar 

  167. Carponcin D et al (2015) New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles. J Non Cryst Solids 409:20–26

    Article  CAS  Google Scholar 

  168. Hua Z, Shi X, Chen Y (2019) Preparation, structure, and property of highly filled polyamide 11/BaTiO3 piezoelectric composites prepared through solid-state mechanochemical method. Polym Compos 40(S1):E177–E185

    Article  CAS  Google Scholar 

  169. Sakamoto WK, Shibatta-Katesawa S, Kanda DHF, Fernandes SH, Longo E, Chierice GO (1999) Piezoelectric effect in composite polyurethane–ferroelectric ceramics. Phys status solidi 172(1):265–271

    Article  CAS  Google Scholar 

  170. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16(1):71–75

    Article  CAS  Google Scholar 

  171. Yavuz Ö, Ram MK, Aldissi M, Poddar P, Srikanth H (2005) Polypyrrole composites for shielding applications. Synth Met 151(3):211–217

    Article  CAS  Google Scholar 

  172. Wasim M, Naeem MA, Khan MR, Mushtaq M, Wei Q (2020) Preparation and characterization of copper/zinc nanoparticles-loaded bacterial cellulose for electromagnetic interference shielding. J Ind Text 1–17. https://doi.org/10.1177/1528083720921531

  173. Lozano K, Espinoza L, Hernandez K, Adhikari AR, Radhakrishnan G, Adams PM (2009) Investigation of the electromagnetic interference shielding of titanium carbide coated nanoreinforced liquid crystalline polymer. J Appl Phys 105(10):103511

    Article  Google Scholar 

  174. Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana 84(6):1099–1116

    Article  CAS  Google Scholar 

  175. Ren F et al (2018) Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Compos Part B Eng 155:405–413

    Article  CAS  Google Scholar 

  176. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568

    Article  CAS  Google Scholar 

  177. Li N et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  CAS  PubMed  Google Scholar 

  178. Liang J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon N Y 47(3):922–925

    Article  CAS  Google Scholar 

  179. Wasim M et al (2020) Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text 1–30. https://doi.org/10.1177/1528083720977201

  180. Wasim M, Khan MR, Mushtaq M, Naeem A, Han M, Wei Q (2020) Surface modification of bacterial cellulose by copper and Zinc Oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics. Coatings 10(4):1–17. https://doi.org/10.3390/coatings10040364

    Article  CAS  Google Scholar 

  181. Manocha LM, Valand J, Patel N, Warrier A, Manocha S (2006) Nanocomposites for structural applications. Indian J Pure Appl Phys 44(2):135–142

    CAS  Google Scholar 

  182. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Reports 53(3–4):73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  183. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: Structural control and applications. Adv Mater 17(6):657–669. https://doi.org/10.1002/adma.200401291

    Article  CAS  Google Scholar 

  184. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J Compos Mater 40(17):1511–1575. https://doi.org/10.1177/0021998306067321

    Article  CAS  Google Scholar 

  185. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001

    Article  CAS  Google Scholar 

  186. Bauer M, Kahle O, Landeck S, Uhlig C, Wurzel R (2008) High Performance Composites Using Nanotechnology. Adv Mater Res 32:149–152. https://doi.org/10.4028/www.scientific.net/AMR.32.149

    Article  CAS  Google Scholar 

  187. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst (Functionalized graphene). ACS Nano 4(1):380–386. https://doi.org/10.1021/nn901221k

    Article  CAS  PubMed  Google Scholar 

  188. Hassan SF, Gupta M (2005) Development of high performance magnesium nano-composites using nano-Al2O3as reinforcement. Mater Sci Eng A 392(1–2):163–168. https://doi.org/10.1016/j.msea.2004.09.047

    Article  CAS  Google Scholar 

  189. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15(7):1456–1465. https://doi.org/10.1021/cm020953r

  190. Chen GZ et al (2000) Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater 12(7):522–526. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c522::AID-ADMA522%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  191. Song S, Sun Y, Lin Y, You B (2013) A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application. Appl Surf Sci 273:652–660. https://doi.org/10.1016/j.apsusc.2013.02.103

    Article  CAS  Google Scholar 

  192. Ching YC, Yaacob I (2012) Effect of polyurethane / nanosilica composite coating on thermomechanical properties of polyethylene film. Mater Technol 27(1):4–7. https://doi.org/10.1179/175355511X13240279340246

    Article  Google Scholar 

  193. Mokhatab S, Fresky MA, Islam MR (2006) Applications of Nanotechnology in Oil and Gas E & P. J Pet Technol 48–51. https://doi.org/10.2118/0406-0048-JPT

  194. Kermani MB, Morshed A (2003) Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium. Corrosion 59(8):659–683. https://doi.org/10.5006/1.3277596

    Article  CAS  Google Scholar 

  195. Choi Y-S, Nesic S, Young D (2010) Effect of Impurities on the Corrosion Behavior of CO 2 Transmission Pipeline Steel in Supercritical CO 2 −Water Environments. Environ Sci Technol 44(23):9233–9238. https://doi.org/10.1021/es102578c

    Article  CAS  PubMed  Google Scholar 

  196. Cho J, Daniel IM (2008) Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers. Scr Mater 58(7):533–536. https://doi.org/10.1016/j.scriptamat.2007.11.011

    Article  CAS  Google Scholar 

  197. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials (Basel) 11(3). https://doi.org/10.3390/ma11030429

  199. Il C, Park OO, Gon J, Joon H (2001) The fabrication of syndiotactic polystyrene / organophilic clay nanocomposites and their properties. 42:7465–7475

  200. Asmatulu R, Claus RO, Mecham JB, Corcoran SG (2007) Nanotechnology-associated coatings for aircrafts. Mater Sci 43(3):415–422. https://doi.org/10.1007/s11003-007-0047-7

    Article  CAS  Google Scholar 

  201. Jalali M, Molière T, Michaud A, Wuthrich R (2013) Multidisciplinary characterization of new shield with metallic nanoparticles for composite aircrafts. Compos Part B Eng 50:309–317. https://doi.org/10.1016/j.compositesb.2013.02.043

    Article  CAS  Google Scholar 

  202. Jung YC et al (2010) Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules 43(14):6106–6112. https://doi.org/10.1021/ma101039y

    Article  CAS  Google Scholar 

  203. Carvalho P et al (2014) Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings. Appl Surf Sci 307:548–557. https://doi.org/10.1016/j.apsusc.2014.04.072

    Article  CAS  Google Scholar 

  204. Xu W et al (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277

    Article  CAS  PubMed  Google Scholar 

  205. Andrade PF, de Faria AF, da Silva DS, Bonacin JA, do Carmo Gonçalves M (2014) Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Colloids Surfaces B Biointerfaces 118:289–297

  206. Rahman MM et al (2017) Removal of Pollutants from Water by Using Single-Walled Carbon Nanotubes (SWCNTs) and Multi-walled Carbon Nanotubes (MWCNTs). Arab J Sci Eng 42(1):261–269. https://doi.org/10.1007/s13369-016-2303-3

    Article  CAS  Google Scholar 

  207. Ong YT, Ahmad AL, Hussein S, Zein S, Tan SH (2010) A review on carbon nanotubes in an environmental protection and gree engineering perspective. Brazilian J Chem Engi 27(02):227–242. https://doi.org/10.1590/S0104-66322010000200002

    Article  CAS  Google Scholar 

  208. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2014) “Photocatalytic TiO2/carbon nanotube nanocomposites for environmental applications: an overview and recent developments”, Fullerenes. Nanotub Carbon Nanostructures 22(5):471–509

    Article  CAS  Google Scholar 

  209. Yang S, Zhu S, Hong R (2020) Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 10(12):1215

    Article  Google Scholar 

  210. Arora A, Padua GW (2010) Review: Nanocomposites in food packaging. J Food Sci 75(1):43–49. https://doi.org/10.1111/j.1750-3841.2009.01456.x

    Article  CAS  Google Scholar 

  211. de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253. https://doi.org/10.1016/j.foodres.2009.03.019

    Article  CAS  Google Scholar 

  212. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  213. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95. https://doi.org/10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  214. Liversidge DACGG, Cundy KC, Bishop JF (1980) United States Patent (19) 54. 96(19):62–66. US005485919A

  215. Yavuz AA, Glas B, Ihle M, Hacioglu H, Wehefritz K (2014) Patent Application Publication (10) Pub. No.: US 2014/0270163 A1. 1(19):1999–2002. https://doi.org/10.1016/j.(73)

  216. De Cicco D, Asaee Z, Taheri F (2017) Use of Nanoparticles for Enhancing the Interlaminar Properties of Fiber-Reinforced Composites and Adhesively Bonded Joints—A Review. Nanomaterials 7(11):360. https://doi.org/10.3390/nano7110360

    Article  CAS  PubMed Central  Google Scholar 

  217. Wagner HD, Vaia RA (2004) Nanocomposites: Issues at the interface. Mater Today 7(11):38–42. https://doi.org/10.1016/S1369-7021(04)00507-3

    Article  CAS  Google Scholar 

  218. Kurahatti RV, Surendranathan AO, Kori SA, Singh N, Kumar AVR, Srivastava S (2010) Defence applications of polymer nanocomposites. Def Sci J 60(5):551–563. https://doi.org/10.14429/dsj.60.578

    Article  CAS  Google Scholar 

  219. Abarrategi A et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102. https://doi.org/10.1016/j.biomaterials.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  220. Mishra RK (2018) Efficient In-Situ Reinforced Micro / Nano Fibrillar Polymer-Polymer Composites : A New Class of Materials for Biomedical Application. https://doi.org/10.16966/jmcdd.106

  221. Tonelli FMP et al (2012) Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int J Nanomedicine 7:4511–4529. https://doi.org/10.2147/IJN.S33612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hule RA, Pochan D (2007) P olymer for Biomedical. MRS Bull 32(April):354–358. https://doi.org/10.1557/mrs2007.235

    Article  CAS  Google Scholar 

  223. Świȩtek M, Tokarz W, Tarasiuk J, Wroński S, BŁazewicz M (2014) Magnetic polymer nanocomposite for medical application. Acta Phys Pol A 125(4):891–894. https://doi.org/10.12693/APhysPolA.125.891

  224. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos Sci Technol 70(13):1764–1776. https://doi.org/10.1016/j.compscitech.2010.06.002

    Article  CAS  Google Scholar 

  225. Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev Adv Mater Sci 34(2):173–184

    CAS  Google Scholar 

  226. Sarathi R, Sahu R, Danikas MG (2009) Understanding the mechanical properties of epoxy nanocomposite insulating materials. J Electr Eng 60(6):358–361

    Google Scholar 

  227. Wu (1981) United States Patent (19) (54 PREPARATION OFSTYRENE FROM. 19: 2–5. Available: https://patentimages.storage.googleapis.com/a0/c2/92/958410814e13d4/US4255599.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Qamar Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, T., Salam, A., Khan, A. et al. Functional nanocomposites and their potential applications: A review. J Polym Res 28, 36 (2021). https://doi.org/10.1007/s10965-021-02408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02408-1

Keywords

Navigation