Skip to main content
Log in

Theoretical investigation on the mechanism and kinetics of the ring-opening polymerization of ε-caprolactone initiated by tin(II) alkoxides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical investigation of the ring-opening polymerization (ROP) mechanism of ε-caprolactone (CL) with tin(II) alkoxide, Sn(OR)2 initiators (R = n-C4H9, i-C4H9, t-C4H9, n-C6H13, n-C8H17) was studied. The density functional theory at B3LYP level was used to perform the modeled reactions. A coordination-insertion mechanism was found to occur via two transition states. Starting with a coordination of CL onto tin center led to a nucleophilic addition of the carbonyl group of CL, followed by the exchange of alkoxide ligand. The CL ring opening was completed through classical acyl-oxygen bond cleavage. The reaction barrier heights of ε-caprolactone with different initiators were calculated using potential energy profiles. The reaction of ε-caprolactone with Sn(OR)2 having R = n-C4H9 has the least value of barrier height compared to other reactions. The rate constants for each reaction were calculated using the transition state theory with TheRATE program. The rate constants are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science (Washington, DC, U S) 297:803–807. doi:10.1126/science.297.5582.803

    Article  CAS  Google Scholar 

  2. Chang RK, Price J, Whitworth CW (1987) Control of drug release rate by use of mixtures of polycaprolactone and cellulose acetate butyrate polymers. Drug Dev Ind Pharm 13(6):1119–1135

    Article  CAS  Google Scholar 

  3. Chang RK, Price JC, Whitworth CW (1986) Control of drug release rates through the use of mixtures of polycaprolactone and cellulose propionate polymers. Pharm Technol 10(10):24, 26, 29, 32–23

    CAS  Google Scholar 

  4. Chasin M, Langer R eds (1990) Drugs and the pharmaceutical sciences, vol. 45. Biodegradable polymers as drug delivery systems. Dekker, New York

  5. Edlund U, Albertsson AC (2002) Degradable polymer microspheres for controlled drug delivery. In: Degradable aliphatic polyesters, vol 157. Advances in polymer science. Springer, Berlin, pp 67–112

  6. Perrin DE, English JP (1997) Polycaprolactone. Drug Target Deliv 7:63–77. In: Handbook of biodegradable polymers. Harwood, Amsterdam

  7. Kumar D (2011) Biodegradable polymers and packaging: go green. Pop Plast Packag 56:24–32 Reserved

    Google Scholar 

  8. Jérôme C, Lecomte P (2008) Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60(9):1056–1076

    Article  Google Scholar 

  9. Albertsson A-C, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6):1466–1486. doi:10.1021/bm034247a

    Article  CAS  Google Scholar 

  10. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev (Washington, DC, U S) 107:5813–5840. doi:10.1021/cr068415b

    Article  CAS  Google Scholar 

  11. von Schenck H, Ryner M, Albertsson A-C, Svensson M (2002) Ring-opening polymerization of lactones and lactides with Sn(IV) and Al(III) initiators. Macromolecules 35(5):1556–1562. doi:10.1021/ma011653i

    Article  Google Scholar 

  12. Gadzinowski M, Sosnowski S, Slomkowski S (1996) Kinetics of the dispersion ring-opening polymerization of ε-caprolactone initiated with diethylaluminum ethoxide. Macromolecules 29(20):6404–6407. doi:10.1021/ma9600466

    Article  CAS  Google Scholar 

  13. Chen H-Y, Huang B-H, Lin C-C (2005) A Highly efficient initiator for the ring-opening polymerization of lactides and ε-caprolactone: a kinetic study. Macromolecules 38(13):5400–5405. doi:10.1021/ma050672f

    Article  CAS  Google Scholar 

  14. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2009) Synthesis of poly([var epsilon]-caprolactone)-block-poly(n-butyl acrylate) by combining ring-opening polymerization and atom transfer radical polymerization with Ti[OCH2CCl3]4 as difunctional initiator: I. Kinetic study of Ti[OCH2CCl3]4 initiated ring-opening polymerization of [var epsilon]-caprolactone. Polymer 50(5):1109–1117

    Article  CAS  Google Scholar 

  15. Meelua W, Bua-own V, Molloy R, Punyodom W (2012) Comparison of metal alkoxide initiators in the ring-opening polymerization of caprolactone. Adv Mater Res (Durnten-Zurich, Switz) 506:142–145. doi:10.4028/www.scientific.net/AMR.506.142

    Article  CAS  Google Scholar 

  16. Meelua W, Molloy R, Meepowpan P, Punyodom W (2012) Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone: steric influence of titanium(IV) alkoxides as initiators. J Polym Res 19:1–11. doi:10.1007/s10965-011-9799-8

    Article  CAS  Google Scholar 

  17. Li X, Zhu Y, Ling J, Shen Z (2012) Direct cyclodextrin-mediated ring opening polymerization of ε-caprolactone in the presence of yttrium trisphenolate catalyst. Macromol Rapid Commun 33:1008–1013. doi:10.1002/marc.201100848

    Article  CAS  Google Scholar 

  18. Ling J, Liu J, Shen Z, Hogen-Esch TE (2011) Ring-opening polymerization of .vepsiln.-caprolactone catalyzed by Yttrium trisphenolate in the presence of 1,2-propanediol: Do both primary and secondary hydroxyl groups initiate polymerization? J Polym Sci, Part A Polym Chem 49:2081–2089. doi:10.1002/pola.24637

    Article  CAS  Google Scholar 

  19. Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33(3):689–695

    Article  CAS  Google Scholar 

  20. Kricheldorf HR, Bornhorst K, Hachmann-Thiessen H (2005) Bismuth(III) n-hexanoate and tin(II) 2-ethylhexanoate initiated copolymerizations of ε-caprolactone and l-lactide. Macromolecules 38(12):5017–5024. doi:10.1021/ma047873o

    Article  CAS  Google Scholar 

  21. Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S (2005) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. polymerization of ε-caprolactone and l, l-lactide co-initiated with primary amines. Macromolecules 38(20):8170–8176. doi:10.1021/ma050752j

    Article  CAS  Google Scholar 

  22. Sobczak M, Kolodziejski W (2009) Polymerization of cyclic esters initiated by carnitine and tin (II) octoate. Molecules 14(2):621–632

    Article  CAS  Google Scholar 

  23. Sobczak M (2012) Ring-opening polymerization of cyclic esters in the presence of choline/SnOct2 catalytic system. Polym Bull 68(9):2219–2228. doi:10.1007/s00289-011-0676-8

    Article  CAS  Google Scholar 

  24. Fernández J, Meaurio E, Chaos A, Etxeberria A, Alonso-Varona A, Sarasua JR (2013) Synthesis and characterization of poly (l-lactide/ε-caprolactone) statistical copolymers with well resolved chain microstructures. Polymer 54(11):2621–2631. doi:10.1016/j.polymer.2013.03.009

    Article  Google Scholar 

  25. Dumklang M, Pattawong N, Punyodom W, Meepowpan P, Molloy R, Hoffman M (2009) Novel tin(II) butoxides for use as initiators in the ring-opening polymerisation of ε-caprolactone. Chiang Mai J Sci 36:136–148

    CAS  Google Scholar 

  26. Kleawkla A, Molloy R, Naksata W, Punyodom W (2008) Ring-opening polymerization of ε-caprolactone using novel tin(II) alkoxide initiators. Adv Mater Res (Zuerich, Switz) 55–57:757–760. doi:10.4028/www.scientific.net/AMR.55-57.757

    Article  Google Scholar 

  27. Jerome R, Lecomte P (2005) New developments in the synthesis of aliphatic polyesters by ring-opening polymerisation. Woodhead, Cambridge, pp 77–106. doi:10.1533/9781845690762.1.77

  28. Albertsson A-C, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci 157:1–40

    CAS  Google Scholar 

  29. Liu J, Ling J, Li X, Shen Z (2009) Monomer insertion mechanism of ring-opening polymerization of [var epsilon]-caprolactone with yttrium alkoxide intermediate: a DFT study. J Mol Catal A Chem 300(1–2):59–64

    Article  CAS  Google Scholar 

  30. Ling J, Shen J, Hogen-Esch TE (2009) A density functional theory study of the mechanisms of scandium-alkoxide initiated coordination-insertion ring-opening polymerization of cyclic esters. Polymer 50:3575–3581. doi:10.1016/j.polymer.2009.06.006

    Article  CAS  Google Scholar 

  31. Ni X, Liang Z, Ling J, Li X, Shen Z (2011) Controlled ring-opening polymerization of ε-caprolactone initiated by in situ formed yttrium trisalicylaldimine complexes, and their study by density functional theory. Polym Int 60:1745–1752. doi:10.1002/pi.3145

    Article  CAS  Google Scholar 

  32. Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D (2011) Polym Chem 2:2249–2256. doi:10.1039/c1py00210d

    Google Scholar 

  33. Susperregui N, Kramer MU, Okuda J, Maron L (2011) Theoretical study on the ring-opening polymerization of ε-caprolactone by [YMeX(THF)5]+ with X = BH4, NMe2. Organometallics 30:1326–1333. doi:10.1021/om100606p

    Article  CAS  Google Scholar 

  34. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  35. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  36. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82(1):284–298

    Article  CAS  Google Scholar 

  37. Ryner M, Stridsberg K, Albertsson A-C, von Schenck H, Svensson M (2001) Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and l-lactide with stannous 2-ethylhexanoate. A theoretical study. Macromolecules 34(12):3877–3881. doi:10.1021/ma002096n

    Article  CAS  Google Scholar 

  38. Eguiburu JL, Fernandez-Berridi MJ, Cossio FP, Roman JS (1999) Ring-opening polymerization of l-lactide initiated by (2-methacryloxy)ethyloxy-aluminum trialkoxides. 1. kinetics. Macromolecules 32(25):8252–8258. doi:10.1021/ma990445b

    Article  CAS  Google Scholar 

  39. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor-corrector integrator. J Chem Phys 120:9918–9924. doi:10.1063/1.1724823

    Article  CAS  Google Scholar 

  40. Zhu R, Wang R, Zhang D, Liu C (2009) A density functional theory study on the ring-opening polymerization of d-lactide catalyzed by a bifunctional-thiourea catalyst. Aust J Chem 62(2):157–164. doi:10.1071/CH08118

    Article  CAS  Google Scholar 

  41. Frisch GWT MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 (Revision E.01). Gaussian, Inc, Wallingford

    Google Scholar 

  42. Khanna A, Sudha Y, Pillai S, Rath S (2008) Molecular modeling studies of poly lactic acid initiation mechanisms. J Mol Model 14(5):367–374

    Article  CAS  Google Scholar 

  43. Truong TN, Zhang S (2001) VKLab version 1.0. University of Utah, Salt Lake

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Research University Project under Thailand’s Office of the Higher Education Commission for financial support and National Science and Technology Development Agency (NSTDA). C. Sattayanon gratefully thanks the Center for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Chiang Mai University. And the Graduate School of Chiang Mai University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawee Kungwan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattayanon, C., Kungwan, N., Punyodom, W. et al. Theoretical investigation on the mechanism and kinetics of the ring-opening polymerization of ε-caprolactone initiated by tin(II) alkoxides. J Mol Model 19, 5377–5385 (2013). https://doi.org/10.1007/s00894-013-2026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2026-2

Keywords

Navigation