Skip to main content
Log in

Molecular modeling studies of poly lactic acid initiation mechanisms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The two possible routes to synthesize poly (lactic acid) are polycondensation of the lactic acid and ring opening polymerization (ROP) of the lactide. This work involves molecular modeling of the polymerization initiation mechanisms using different initiators a) H2SO4 for polycondensation b) aluminum isopropoxide for coordination-insertion ROP c)methyl triflate for cationic ROP, and d) potassium methoxide for anionic ROP. For molecular modeling of PLA, we have benchmarked our approach using Ryner’s work on ROP of L-lactide using stannous (II) 2-ethylhexanoate (Sn(Oct)2) and methanol as initiators. Our values of -15.2 kcal mol-1 and -14.1 kcal mol-1 for enthalpy changes in the two steps of activated complex formation match with Ryner’s. Geometric and frequency optimizations have been done on Gaussian’03 using B3LYP density functional theory along with the basis sets LANL2DZ for metal atoms and 6–31G* and 6–31G** for non metal atoms. The kinetic rate constant for each mechanism has been calculated using the values of energy of activation, change in enthalpy, Gibbs free energy, entropy and the partition functions from the Gaussian’03 output. Our polycondensation rate constant value of 1.07 × 10–4 se-1 compares well with 1.51 × 10–4 se-1 as reported by Wang. However, ROP rate constants could not be validated due to lack of experimental data.

Cationic Ring Opening Polymerization of L-Lactide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eling B, Gogolewski S, Pennings AJ (1982) Polymer 23:1587–1593

    Article  CAS  Google Scholar 

  2. Schmack G, Tandler B, Vogel R, Beyreuther R, Jacobsen S, Fritz H-G (1999) J Appl Polym Sci 73:2785–2797

    Article  CAS  Google Scholar 

  3. Mooney DJ, Sano K, Kaufmann MP, Majahod K, Schloo B, Vacanti JP (1997) J Biomed Mater Res 37:413–420

    Article  CAS  Google Scholar 

  4. Satyanarayana D, Chatterji PR (1993) Macromol Chem Phys C33:349–368

    CAS  Google Scholar 

  5. Griffith GL (2000) Polym Biomat Acta Mater 48:263–277

    CAS  Google Scholar 

  6. Gupta B, Revagade N, Hilborn J (2000) Prog Polym Sci 32:455–482

    Article  Google Scholar 

  7. Singh S, Webster DC, Singh J (2007) Int J Pharm 341:68–77

    Article  CAS  Google Scholar 

  8. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  9. Chen S, Singh J (2005) Pharm Dev Technol 10:319–325

    Article  CAS  Google Scholar 

  10. Lin PL, Fang HW, Tseng T, Lee WH (2007) Mater Lett 61:3009–3013

    Article  CAS  Google Scholar 

  11. Stolt M, Sodergard A (2002) Prog in Polym Sci 27:1123–1163

    Article  Google Scholar 

  12. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Arch of Surg 93:839–843

    CAS  Google Scholar 

  13. Garlotta D (2001) J Polym Env 9(3):63–84

    Article  CAS  Google Scholar 

  14. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) J of Macro Sci 45:325–349

    Google Scholar 

  15. Kricheldorf HR, Serra A (1985) Polym Bull 14:497–502

    Article  CAS  Google Scholar 

  16. Kricheldorf HR, Sumbel M (1989) Euro Poly J 25:585–591

    Article  CAS  Google Scholar 

  17. Kohn FE, Van Den Berg JWA, Van de Ridder G, Feijen J (1984) J of App Poly Sci 29:4265–4277

    Article  CAS  Google Scholar 

  18. Lille E, Rolf CS (1975) Makromoekulare Chemie 176(6):1901–1906

    Article  Google Scholar 

  19. Dubios P, Jacobs C, Jerome R, Teyssie P (1991) Macromolecules 24:2266–2270

    Article  Google Scholar 

  20. Kricheldorf HR, Dunsing R (1986) Makromoleculare Chemie 187:1611–1625

    Article  CAS  Google Scholar 

  21. Jedlinski Z, Walach W, Kurcok P, Adamus G (1991) Makromoleculare Chemie 192:2051–2057

    Article  CAS  Google Scholar 

  22. Leach AR (1996) Molecular Modelling: Principles and Applications. Pearson Education Limited

  23. Clark T (1985) A Handbook of Computational Chemistry. John Wiley and Sons, New York

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  25. Dunning T (1970) J Chem Phys 53(7):2823–2833

    Article  CAS  Google Scholar 

  26. Dunning Jr TH (1971) J Chem Phys 55(2):716–723

    Article  CAS  Google Scholar 

  27. McLean AD, Chandler GS (1980) J Chem Phys 72(10):5639–5648

    Article  CAS  Google Scholar 

  28. Krishnan R, Binkley RS, Seeger R, Pople JA (1980) J Chem Phys 72(1):650

    Article  CAS  Google Scholar 

  29. Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98(45):1623–11627

    Google Scholar 

  30. Becke AD (1998) Phys Rev A 38:3098

    Article  Google Scholar 

  31. Lee C, Yang W, Parr RG (1980) Phys Rev B 37:785

    Article  Google Scholar 

  32. Colle R, Salvetti O (1975) Theor Chim Acta 37:329

    Article  CAS  Google Scholar 

  33. Colle R, Salvetti O (1979) Theor Chim Acta 53(1):55–63

    Article  CAS  Google Scholar 

  34. Eguiburu JL, Fernandez-Berridi MJ, Cossio FP, SanRoman J (1999) Macromolecules 32(25):8252–8258

    Article  CAS  Google Scholar 

  35. Yoshida T, Koga N, Morokuma K (1996) Organometallics 15(2):766–767

    Article  CAS  Google Scholar 

  36. Lohrenz JCW, Woo TK, Ziegler T (1995) J Am Chem Soc 117(51):12793–12800

    Article  CAS  Google Scholar 

  37. Musaev DG, Froese RDJ, Svensson M, Morokuma K (1997) J Am Chem Soc 119(2):367–374

    Article  CAS  Google Scholar 

  38. Ryner M, Stritsberg K, Albertson A, Schenck HV, Svensson M (2001) Macromolecules 34(12):3877–3881

    Article  CAS  Google Scholar 

  39. Musaev DG, Morokuma K (1996) J Phys Chem 100(16):6509–6517

    Article  CAS  Google Scholar 

  40. Erikson LA, Pettersson LGM, Siegbahn PEM, Wahlgren U (1995) J Chem Phys 102(2):872–878

    Article  Google Scholar 

  41. Ricca BCW (1994) J Phys Chem 98(49):2899–2903

    Article  Google Scholar 

  42. Heinemann HRH, Wesendrup R, Koch W, Schwarz VH (1995) J Am Chem Soc 117(1):495–500

    Article  CAS  Google Scholar 

  43. Hertwig RH, Hrusak J, Schroder D, Koch W, Schwarz H (1995) Chem Phys Lett 236(1,2):194–200

    Article  CAS  Google Scholar 

  44. Schroder D, Hrusak J, Hertwig RH, Koch W, Schwerdtfeger P, Schwarz H (1995) Organometallics 14(1):312–316

    Article  Google Scholar 

  45. Fiedler SD, Shaik S, Schwarz H (1994) J Am Chem Soc 116(23):10734–10741

    Article  CAS  Google Scholar 

  46. Fan L, Ziegler T (1991) J Chem Phys 95(10):7401–7408

    Article  CAS  Google Scholar 

  47. Berces A, Ziegler T, Fan L (1994) J Phys Chem 98(6):1584–1595

    Article  CAS  Google Scholar 

  48. Lyne PD, Mingos DMP, Ziegler T, Downs AJ (1993) Inorg Chem 32(22):4785–4796

    Article  CAS  Google Scholar 

  49. Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117(1):486–494

    Article  CAS  Google Scholar 

  50. Dunning TH (1970) J Chem Phys 53:2823

    Article  CAS  Google Scholar 

  51. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  52. Wiltzke DR, Narayan R, Kolstad JJ (1997) Macromolecules 30(23):7075–7085

    Article  Google Scholar 

  53. Wang Q, Zhang J (1994) Yingyong Huaxue 11(1):76–79

    Google Scholar 

  54. Hiltunen K, Seppala JV, Harkonen M (1997) Macromolecules 30:373–379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Khanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, A., Sudha, Y.S., Pillai, S. et al. Molecular modeling studies of poly lactic acid initiation mechanisms. J Mol Model 14, 367–374 (2008). https://doi.org/10.1007/s00894-008-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0278-z

Keywords

Navigation