Skip to main content
Log in

Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone: Steric influence of titanium(IV) alkoxides as initiators

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Four titanium(IV) alkoxides, namely: Ti(IV) n-propoxide (1), Ti(IV) n-butoxide (2), Ti(IV) tert-butoxide (3), and Ti(IV) 2-ethylhexoxide (4), have been used as initiators in the bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). The influence of the alkoxide group on the course of the ROP of ε-CL was investigated by means of 1H-NMR and differential scanning calorimetry (DSC). The 1H-NMR spectra confirmed that the ROP reaction of ε-CL proceeded via the widely accepted coordination-insertion mechanism for each of the four initiators. Isoconversional methods have been used to evaluate non-isothermal DSC data via the equations of Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW). The kinetic studies showed that the polymerization rate for the four initiators (1-4) was in the order of 1 > 2 ≈ 4 > 3. The lowest activation energies (40–47, 42–44, and 49–52 kJ/mol for the Friedman, KAS and OFW methods respectively) were found in the polymerizations using Ti(IV) n-propoxide (1), while the highest activation energies (84–107, 77–87, and 80–91 kJ/mol for the Friedman, KAS and OFW methods respectively) were obtained using Ti(IV) tert-butoxide (3). Differences in the rates of polymerization and the activation energies amongst the four initiators appeared to be governed mainly by the different degrees of steric hindrance in the initiator structure. These results represent important findings regarding the steric influence of the alkoxide groups on the kinetics of the ROP of ε-CL initiated by titanium(IV) alkoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) J Controlled Release 152:168–176

    Article  CAS  Google Scholar 

  2. Khan JH, Schue F, George GA (2009) Polym Int 58:296–301

    Article  CAS  Google Scholar 

  3. Albertsson AC, Varma IK (2003) Biomacromolecules 4:1466–1486

    Article  CAS  Google Scholar 

  4. Kricheldorf HR, Berl M, Scharnagl N (1988) Macromolecules 21:286–293

    Article  CAS  Google Scholar 

  5. Dubois P, Barakat I, Jerome R, Teyssie P (1993) Macromolecules 26:4407–4412

    Article  CAS  Google Scholar 

  6. Kricheldorf HR (2001) Chemosphere 43:49–54

    Article  CAS  Google Scholar 

  7. Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D (2011) Polym Chem 2:2249–2256

    Article  CAS  Google Scholar 

  8. Cheng G, Fan X, Pan W, Liu Y (2010) J Polym Res 17:847–851

    Article  CAS  Google Scholar 

  9. Wu J, Yu T-L, Chen C-T, Lin C-C (2006) Coord Chem Rev 250:602–626

    Article  CAS  Google Scholar 

  10. Gao A, Mu Y, Zhang J, Yao W (2009) Eur J Inorg Chem 2009:3613–3621

    Article  Google Scholar 

  11. Kleawkla A, Molloy R, Naksata W, Punyodom W (2008) Adv Mat Res 55–57:757–760

    Article  Google Scholar 

  12. Huang B-H, Lin C-N, Hsueh M-L, Athar T, Lin C-C (2006) Polymer 47:6622–6629

    Article  CAS  Google Scholar 

  13. Sheng H, Li J, Yao YZY, Shen Q (2009) J Appl Polym Sci 112:454–460

    Article  CAS  Google Scholar 

  14. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2008) J Appl Polym Sci 110:3990–3998

    Article  CAS  Google Scholar 

  15. Cayuela J, Bounor-Legare V, Cassagnau P, Michel A (2006) Macromolecules 39:1338–1346

    Article  CAS  Google Scholar 

  16. Xia Z, Zerroukhi A, Chalamet Y, Chen J (2008) J Appl Polym Sci 109:1772–1780

    Article  CAS  Google Scholar 

  17. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2008) J Polym Sci Part A: Polym Chem 46:7773–7784

    Article  CAS  Google Scholar 

  18. Asandei AD, Chen Y, Adebolu OI, Simpson CP (2008) J Polym Sci Part A: Polym Chem 46:2869–2877

    Article  CAS  Google Scholar 

  19. Parssinen A, Kohlmayr M, Leskela M, Lahcini M, Repo T (2010) Polym Chem 1:834–836

    Article  CAS  Google Scholar 

  20. Takeuchi D, Nakamura T, Aida T (2000) Macromolecules 33:725–729

    Article  CAS  Google Scholar 

  21. Chen C-T, Huang C-A, Huang B-H (2004) Macromolecules 37:7968–7973

    Article  CAS  Google Scholar 

  22. Dumklang M, Pattawong N, Punyodom W, Meepowpan P, Molloy R, Hoffman M (2009) Chiang Mai J Sci 36(2):136–148

    CAS  Google Scholar 

  23. Ramírez-Hernández A, Martínez-Richa A (2010) J Appl Polym Sci 115:2288–2295

    Article  Google Scholar 

  24. Vyazovkin S (1997) J Therm Anal 49:1493–1499

    Article  CAS  Google Scholar 

  25. Vyazovkin S (1996) Int J Chem Kinet 28:95–101

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N (1996) Macromolecules 29:1867–1873

    Article  CAS  Google Scholar 

  27. Fernandez d’Arlas B, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A (2007) Thermochim Acta 459:94–103

    Article  Google Scholar 

  28. Papadimitriou SA, Papageorgiou GZ, Bikiaris DN (2008) Eur Polym J 44:2356–2366

    Article  CAS  Google Scholar 

  29. Laidler KJ (1984) J Chem Educ 61:494

    Article  CAS  Google Scholar 

  30. Flynn JH (1997) Thermochim Acta 300:83–92

    Article  CAS  Google Scholar 

  31. Friedman HL (1964) J PolymSci Part C: Polym Sym 6:183–195

    Article  Google Scholar 

  32. Akahira T, Sunose T, Report R (1971) CHIBA Inst Technol 16:22

    Google Scholar 

  33. Ozawa T (1965) Bull Chem Soc Jpn 38:1881

    Article  CAS  Google Scholar 

  34. Flynn JH, Wall LA (1966) Polym Lett 4:191

    Article  Google Scholar 

  35. Doyle CD (1962) J Appl Polym Sci 6:639–642

    Article  CAS  Google Scholar 

  36. Flynn JH (1983) J Therm Anal 27:95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center of Excellence for Innovation in Chemistry, Commission on Higher Education, Ministry of Education, and the National Research University Project under Thailand’s Office of the Higher Education Commission, and the Graduate School of Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winita Punyodom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meelua, W., Molloy, R., Meepowpan, P. et al. Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone: Steric influence of titanium(IV) alkoxides as initiators. J Polym Res 19, 9799 (2012). https://doi.org/10.1007/s10965-011-9799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9799-8

Keywords

Navigation