Skip to main content
Log in

Theoretical study on cooperative effects between X⋯N and X⋯Carbene halogen bonds (X = F,Cl,Br and I)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical calculations are performed to study the interplay between halogen⋯nitrogen and halogen⋯carbene interactions in NCX⋯NCX⋯CH2 complexes, where X = F, Cl, Br and I. Molecular geometries and interaction energies of dyads and triads are investigated at the MP2/aug-cc-pVTZ level of theory. It is found that the X⋯N and X⋯Ccarbene interaction energies in the triads are larger than those in the dyads, indicating that both the halogen bonding interactions are enhanced. The estimated values of cooperative energy E coop are all negative with much larger E coop in absolute value for the systems including iodine. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the quantum theory atoms in molecules methodology and energy decomposition analysis.

The structure of NCX⋯NCX⋯CH2 complexes (X = F, Cl, Br and I)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: A theoretical prospective. Oxford University Press, Oxford

    Google Scholar 

  2. Guardigli C, Liantonio R, Mele ML, Metrangolo P, Resnati G, Pilati T (2003) Design and synthesis of new tectons for halogen bonding-driven crystal engineering. Supramol Chem 15:177–188

    Article  CAS  Google Scholar 

  3. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  4. Berka K, Laskowski R, Riley KE, Hobza P, Vondrášek J (2009) Representative amino acid side chain interactions in proteins. A comparison of highly accurate correlated ab initio quantum chemical and empirical potential procedures. J Chem Theory Comput 5:982–992

    Article  CAS  Google Scholar 

  5. Kerdawy AE, Murray JS, Politzer P, Bleiziffer P, Heßelmann A, Görling A, Clark T (2013) Directional noncovalent interactions: Repulsion and dispersion. J Chem Theory Comput 9:2264–2275

    Article  Google Scholar 

  6. Esrafili MD, Behzadi H, Hadipour NL (2008) Density functional theory study of N–H⋯O, O–H⋯O and C–H⋯O hydrogen-bonding effects on the 14N and 2H nuclear quadrupole coupling tensors of N-acetyl-valine. Biophys Chem 133:11–18

    Article  CAS  Google Scholar 

  7. Esrafili MD, Behzadi H, Beheshtian J, Hadipour NL (2008) Theoretical 14N nuclear quadrupole resonance parameters for sulfa drugs: Sulfamerazine and sulfathiazole. J Mol Graph Model 27:326–331

    Article  CAS  Google Scholar 

  8. Esrafili MD (2012) Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: An ab initio, SAPT and QTAIM study. J Mol Model 18:2003–2011

    Article  CAS  Google Scholar 

  9. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL (1996) A new intermolecular interaction: Unconventional hydrogen bonds with element − hydride bonds as proton acceptor. Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  10. Alkorta I, Zborowski K, Elguero J, Solimannejad M (2006) Theoretical study of dihydrogen bonds between (XH)2, X = Li, Na, BeH, and MgH, and weak hydrogen bond donors (HCN, HNC, and HCCH). J Phys Chem A 110:10279–10286

    Article  CAS  Google Scholar 

  11. Alkorta I, Elguero J, Solimannejad M, Grabowski SJ (2011) Dihydrogen bonding vs metal − σ interaction in complexes between H2 and metal hydride. J Phys Chem A 115:201–210

    Article  CAS  Google Scholar 

  12. Y. Feng, L. Liu, J. Wang, X. Li, Q. Guo, Blue-shifted lithium bonds. Chem. Commun. (2004) 88–89.

  13. Li Y, Wu D (2006) Do single-electron lithium bonds exist? Prediction and characterization of the H3C⋯Li–Y (Y = H, F, OH, CN, NC, and CCH) complexes. J Chem Phys 125:084317

    Article  Google Scholar 

  14. Wang W, Zhang Y, Wang Y (2012) The π⋯π stacking interactions between homogeneous dimers of C6FxI(6–x) (x = 0, 1, 2, 3, 4, and 5): A comparative study with the halogen bond. J Phys Chem A 116:12486–12491

    Article  CAS  Google Scholar 

  15. Grabowski SJ, Bilewicz E (2006) Cooperativity halogen bonding effect–Ab initio calculations on H2CO⋯(ClF)n complexes. Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  16. Riley KE, Merz KM Jr (2007) Insights into the strength and origin of halogen bonding: The halobenzene-formaldehyde dimer. J Phys Chem A 111:1688–1694

    Article  CAS  Google Scholar 

  17. Alkorta I, Blanco F, Elguero J (2009) A computational study of the cooperativity in clusters of interhalogen derivatives. Struct Chem 20:63–71

    Article  CAS  Google Scholar 

  18. Parker AJ, Stewart J, Donald KJ, Parish CA (2012) Halogen bonding in DNA base pairs. J Am Chem Soc 134:5165–5172

    Article  CAS  Google Scholar 

  19. Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  20. Murray JS, Paulsen K, Politzer P (1994) Molecular surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions. Proc Indiana Acad Sci 106:267–275

    CAS  Google Scholar 

  21. Auffinger P, Hays FA, Westhof E, Shing PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  22. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  25. Mohajeri A, Pakiari AH, Bagheri N (2009) Theoretical studies on the nature of bonding in σ-hole complexes. Chem Phys Lett 467:393–397

    Article  CAS  Google Scholar 

  26. Wang ZX, Zheng BS, Yu XY, Yi PG (2008) Characteristics and nature of the intermolecular interactions between thiophene and XY(X, Y = F, Cl, Br): A theoretical study. J Mol Struct (THEOCHEM) 857:13–19

    Article  CAS  Google Scholar 

  27. Esrafili MD, Ahmadi B (2012) A theoretical investigation on the nature of Cl⋯N and Br⋯N halogen bonds in F-Ar-X⋯NCY complexes (X = Cl, Br and Y = H, F, Cl, Br, OH, NH2, CH3 and CN). Comput Theor Chem 997:77–82

    Article  CAS  Google Scholar 

  28. Li Q, Dong X, Jing B, Li W, Cheng J, Gong B, Yua Z (2010) A new unconventional halogen bond C − X⋯H − M between HCCX (X = Cl and Br) and HMH (M = Be and Mg): An ab initio study. J Comput Chem 31:1662–1669

    Article  Google Scholar 

  29. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112:10856–10863

    Article  CAS  Google Scholar 

  30. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  31. Esrafili MD (2013) A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 19:1417–1427

    Article  CAS  Google Scholar 

  32. Jabłoński M, Palusiak M (2012) Nature of a hydride − halogen bond. A SAPT-, QTAIM-, and NBO-based study. J Phys Chem A 116:2322–2332

    Article  Google Scholar 

  33. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: The varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model. doi:10.1007/s00894-012-1428-x

    Google Scholar 

  34. Esrafili MD (2012) Investigation of H-bonding and halogen-bonding effects in dichloroacetic acid: DFT calculations of NQR parameters and QTAIM analysis. J Mol Model 18:5005–5016

    Article  CAS  Google Scholar 

  35. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  36. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  37. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G (2011) The fluorine atom as a halogen bond donor, viz. a positive site. Cryst Eng Comm 13:6593–6596

    Article  CAS  Google Scholar 

  38. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: T$he effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  39. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: A perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  40. Politzer P, Murray JS (2013) Halogen bonding: An interim discussion. Chem Phys Chem 14:278–294

    Article  CAS  Google Scholar 

  41. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen⋯halogen synthons: Crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    Article  CAS  Google Scholar 

  42. Jiang Y, Alcaraz AA, Chen JM, Kobayashi H, Lu YJ, Snyder JP (2006) Diastereomers of dibromo-7-epi-10-deacetylcephalomannine: Crowded and cytotoxic taxanes exhibit halogen bonds. J Med Chem 49:1891–1899

    Article  CAS  Google Scholar 

  43. Wang F, Ma N, Chen Q, Wang W, Wang L (2007) Halogen bonding as a new driving force for layer-by-layer assembly. Langmuir 23:9540–9542

    Article  CAS  Google Scholar 

  44. Li Q, Yuan H, Jing B, Liu Z, Li W, Cheng J, Gong B, Sun J (2010) Theoretical study of halogen–hydride halogen bonds in F3CL⋯HM (L = Cl, Br; M = Li, BeH, MgH) complexes. Mol Phys 108:611–617

    Article  CAS  Google Scholar 

  45. Mohajeri A, Alipour M, Mousaee M (2011) Halogen − hydride interaction between Z − X(Z = CN, NC; X = F, Cl, Br) and H − Mg − Y(Y = H, F, Cl, Br, CH3). J Phys Chem A 115:4457–4466

    Article  CAS  Google Scholar 

  46. Li RY, Li ZR, Wu Y, Li Y, Chen W, Sun CC (2005) Study of π − halogen bonds in complexes C2H4-nFn − ClF (n = 0–2). J Phys Chem A 109:2608–2613

    Article  CAS  Google Scholar 

  47. Wang YH, Zou JW, Lu YX, Lu QS, Xu HY (2007) Single-electron halogen bond: Ab initio study. Int J Quantum Chem 107:501–506

    Article  CAS  Google Scholar 

  48. Esrafili MD, Mohammadirad N (2013) Insights into the strength and nature of carbene⋯halogen bond interactions: A theoretical perspective. J Mol Model 19:2559–2566

    Article  CAS  Google Scholar 

  49. Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Nonporous organic solids capable of dynamically resolving mixtures of diiodoperfluoroalkanes. Science 323:1461–1464

    Article  CAS  Google Scholar 

  50. Aakeröy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772–13773

    Article  Google Scholar 

  51. Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen-hydride interactions: A theoretical study. J Mol Model 19:3767–3777

    Google Scholar 

  52. Zhao Q, Feng D, Hao J (2011) The cooperativity between hydrogen and halogen bond in the XY⋯HNC⋯XY (X, Y = F, Cl, Br) complexes. J Mol Model 17:2817–2823

    Article  CAS  Google Scholar 

  53. Li QZ, Sun L, Liu XF, Li WZ, Cheng J, Zeng YL (2012) Enhancement of iodine–hydride interaction by substitution and cooperative effects in NCX–NCI–HMY complexes. Chem Phys Chem 13(2012):3997–4002

    Article  CAS  Google Scholar 

  54. Li Q, Lin Q, Li W, Cheng J, Gong B, Sun J (2008) Cooperativity between the halogen bond and the hydrogen bond in H3N⋯XY⋯HF complexes (X, Y = F, Cl, Br). Chem Phys Chem 9:2265–2269

    Article  CAS  Google Scholar 

  55. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  56. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  57. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  58. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  59. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  60. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  61. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  62. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  63. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  64. Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and diminutive unusual weak bonding in F3CX⋯HMgH⋯Y and F3CX⋯Y⋯HMgH trimers (X = Cl, Br; Y = HCN, and HNC). J Phys Chem A 114:12106–12111

    Article  CAS  Google Scholar 

  65. Esrafili MD, Hadipour NL (2011) Characteristics and nature of halogen bonds in linear clusters of NCX (X = Cl, and Br): an ab initio, NBO and QTAIM study. Mol Phys 109:2451–2460

    Article  CAS  Google Scholar 

  66. Koch U, Popelier PLA (1995) Characterization of C-H⋯O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  67. Hobza P, Zahradnik R, Muller-Dethlefs K (2006) The world of non-covalent interactions. Coll Czech Chem Commun 71:443–531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esrafili, M.D., Mohammdain-Sabet, F. & Esmailpour, P. Theoretical study on cooperative effects between X⋯N and X⋯Carbene halogen bonds (X = F,Cl,Br and I). J Mol Model 19, 4797–4804 (2013). https://doi.org/10.1007/s00894-013-1983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1983-9

Keywords

Navigation