Skip to main content
Log in

Theoretical study on O⋯Br and O⋯Cl halogen bonds in some small model molecular systems

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Halogen bonding interactions of type X⋯O=C are important in various fields including biological systems. In this work, theoretical calculations were carried out using B3LYP/6-31 ++G**, MP2/6-31 ++G** and MP2/aug-cc-pVDZ methods on a series of O⋯X halogen bonds between CH2O and CH3CHO as halogen bond acceptor with X-Y (X = Cl, Br; Y = CF3, CF2H, CFH2, CN, CCH, CCCN) as halogen bond donors. The strength of interaction energy for O⋯Br halogen-bonded complexes varies from −2.16 to −5.26 kcal/mol while for O⋯Cl complexes, it is between −1.65 to −3.67 kcal/mol, which indicate the O⋯Br bond to be stronger in comparison to O⋯Cl bond. SAPT analysis suggests that the strength of halogen bonding arises from the electrostatic and induction forces while dispersion is playing a comparatively smaller role. The halogen-bonded interaction energies were found to correlate well with positive electrostatic potential VS,max, halogen bonded distances, and the change in s-character of C-X bond. The halogen-bonded interaction energies were also evaluated for O⋯I bonded complexes and thus these complexes were found to be stronger than O⋯Br and O⋯Cl bonded complexes.

Theoretical calculations were carried out on halogen bonded complexes CH2O⋯X-Y and CH3CHO⋯X-Y (X = Cl, Br, I; Y = CF3, CF2H, CFH2, CN, CCH, CCCN). The interaction energies increase in the order O⋯Cl < O⋯Br < O⋯I. The interaction energies were found to be correlate well with the VS,max, halogen bonded distances, and the change in s-character of C-X bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Legon A C 2010 Phys. Chem. Chem. Phys. 12 7736

  2. Politzer P, Lane P, Concha M C, Ma Y and Murray J S 2007 J. Mol. Model. 13 305

  3. Hauchecorne D, Szostak R, Herrebout W A and van der Veken B J 2009 ChemPhysChem 10 2105

  4. Hauchecorne D, van der Veken B J, Moiana A and Herrebout W A 2010 Chem. Phys. 374 30

  5. Hauchecorne D, Moiana A, van der Veken B J and Herrebout W A 2011 Phys. Chem. Chem. Phys. 13 10204

  6. Politzer P and Murray J S 2013 ChemPhysChem 14 278

  7. Troff R W, Mäkelä T, Topić F, Valkonen A, Raatikainen K and Rissanen K 2013 Eur. J. Org. Chem. 2013 1617

  8. Metrangolo P and Resnati G 2012 Cryst. Growth Des. 12 5835

  9. Jentzsch A V, Emery D, Mareda J, Nayak S K, Metrangolo P, Resnati G, Sakai N and Matile S 2012 Nat. Commun. 3 905

  10. Riley K E and Hobza P 2013 Acc. Chem. Res. 46 927

  11. Yang X, Gan L, Han L, Wang E and Wang J 2013 Angew. Chem., Int. Ed. Engl. 52 2022

  12. Poznanski J and Shugar D 2013 Biochim. Biophys. Acta 1834 1381

  13. Metrangolo P, Neukirch H, Pilati T and Resnati G 2005 Acc. Chem. Res. 38 386

  14. Alkorta I, Blanco F, Deya P M, Elguero J, Estarellas C, Frontera A and Quinonero D 2009 Theor. Chem. Acc. 126 1

  15. Mooibroek T J and Gamez P 2013 CrystEngComm. 15 1802

  16. Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G and Steed J W 2013 Nat. Chem. 5 42

  17. Khavasi H R and Azhdari Tehrani A 2013 Inorg. Chem. 52 2891

  18. Metrangolo P, Meyer F, Pliati T, Resnati G and Terraneo G 2008 Angew. Chem., Int. Ed. Engl. 47 6114

  19. Rosokha S V and Vinakos M K 2012 Cryst. Growth Des. 12 4149

  20. Politzer P, Murray J S and Concha M C 2008 J. Mol. Model. 14 659

  21. Clark T, Hennemann M, Murray J S and Politzer P 2007 J. Mol. Model. 13 291

  22. Murray J S, Lane P, Clark T and Politzer P 2007 J. Mol. Model. 13 1033

  23. Murray J S, Concha M C, Lane P, Hobza P and Politzer P 2008 J. Mol. Model. 14 699

  24. Murray J S, Lane P and Politzer P 2009 J. Mol. Model. 15 723

  25. Politzer P, Murray J S and Concha M C 2007 J. Mol. Model. 13 643

  26. Legon A C 1999 Angew. Chem., Int. Ed. Engl. 38 2686

  27. Metrangolo P, Murray J S, Pliati T, Politzer P, Resnati G and Terraneo G 2011 CrystEngComm. 13 6593

  28. Chopra D and Guru Row T N 2011 CrystEngComm. 13 2175

  29. Pinter B, Nagels N, Herrebout W A and De Proft F 2013 Chem. Eur. J. 19 519

  30. Glaser R, Chen N J, Wu H, Knotts N and Kaupp M 2004 J. Am. Chem. Soc. 126 4412

  31. Romaniello P and Lelj F 2002 J. Phys. Chem. A. 106 9114

  32. Valeiro G, Raos G, Meille S V, Metrangolo P and Resnati G 2000 J. Phys. Chem. A. 104 1617

  33. Sarwar M G, Dragisic B, Dimitrijevic E and Taylor M S 2013 Chem. Eur. J. 19 2050

  34. Zou J W, Jiang Y J, Guo M, Hu G X, Zhiang B, Liu H C and Yu Q S 2005 Chem. Eur. J. 11 740

  35. Larsen D W and Allred A L 1965 J. Am. Chem. Soc. 87 1216

  36. Larsen D W and Allred A L 1965 J. Am. Chem. Soc. 87 1219

  37. Amezaga N J M, Pamies S C, Peruchena N M and Sosa G L 2010 J. Phys. Chem. A. 114 552

  38. Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G and Pinna L A 2005 Chem. Biol. 12 1211

  39. Ghosh M, Meerts I A T M, Cook A, Bergman A, Brouwer A and Johnson L N 2000 Acta. Crystallogr., Sect. D: Biol. Crystallogr. 56 1085

  40. Jiang Y, Alcaraz A A, Chen J M, Kobayashi H, Lu Y J and Synder J P 2006 J. Med. Chem. 49 1891

  41. Lopez-Rodriguez M L, Murcia M, Benhamu B, Viso A, Campillo M and Pardo L 2002 J. Med. Chem. 45 4806

  42. Auffinger P, Hays F A and Westhof E S H P 2004 Proc. Natl. Acad. Sci. USA 101 16789

  43. Riley K E and Hobza P 2007 J. Chem. Theory Comput. 4 232

  44. Riley K E, Murray J S, Politzer P, Concha M C and Hobza P 2009 J. Chem. Theory Comput. 5 155

  45. Zierkiewicz W, Wieczorek R, Hobza P and Michalska D 2011 Phys. Chem. Chem. Phys. 13 5105

  46. Li Q, Xu X, Liu T, Jing B, Li W, Cheng J, Gong B and Sun J 2010 Phys. Chem. Chem. Phys. 12 6837

  47. Boys S F, Moran D and Radom L 2007 J. Phys. Chem. A. 111 11683

  48. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KItao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendel A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo C, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J Gaussian, Inc.: Wallingford CT, 2009

  49. Bulat F A, Toro-Labbe A, Brinck T, Murray J S and Politzer P 2010 J. Mol. Model. 16 1679

  50. Politzer P and Truhlar D G 1981 In Chemical Applications of Atomic and Molecular Electrostatic Potentials (New York: Plenum)

  51. Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899

  52. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press)

  53. Bader R F W 1991 Chem. Rev. 91 893

  54. Bader R F W 1998 In Encyclopedia of Computational Chemistry Schleyer P V R, Allinger N L T, Gasteiger C J, Kollman P A, Schaefer H F S, III, Schreiner P R, (Chichester: Wiley) vol. 1, p 64

  55. Biegler-König F and Schönbohm, J 2002 AIM2000: Version 2.0, Germany

  56. Jeziorski B, Moszyński R and Szalewicz K 1994 Chem. Rev. 94 1887

  57. Moszyński R, Heijmen T G A and Jeziorski B J 1996 Mol. Phys. 88 741

  58. Bukowski R, Cencek W, Jankowski P, Jeziorska M, Jeziorski B, Kucharski SA, Lotrich V F, Misquitta A J, Moszyński R, Patkowski K, Podeszwa R, Rybak S, Szalewicz K, Williams H L, Wheatley R J, Wormer P E S and żuchowski P S 2008 University of Delaware and University of Warsaw: Newark (DE) and Warsaw

  59. Naray-Szabo G and Ferenczy G G 1995 Chem. Rev. 95 829

  60. Murray J S and Politzer P 1998 THEOCHEM 425 107

  61. Politzer P, Murray J S and Concha M C 2002 Int. J. Quantum Chem. 88 19

  62. Bader R F W, Carroll M T, Chesseman J R and Chang C 1987 J. Am. Chem. Soc. 109 7968

  63. Brick T, Murray J S and Politzer P 1992 Int. J. Quantum Chem. 44 57

  64. Murray-Rust P, Stallings W C, Monti C T, Preston R K and Glusker J P 1983 J. Am. Chem. Soc. 105 3206

  65. Ramasubbu N, Parthasartahy P and Murray-Rust P 1986 J. Am. Chem. Soc. 108 4308

  66. Murray-Rust P and Motherwell W D S 1979 J. Am. Chem. Soc 101 4374

  67. Riley K E, Murray J S, Fanfrlik J, Rezac J, Sola R J, Concha M C, Ramos F M and Politzer P 2011 J. Mol. Model. 17 3309

  68. Shields Z P, Murray J S and Politzer P 2010 Int. J. Quantum Chem. 110 2823

  69. Keefe C D and Istvankova Z 2011 Can. J. Chem. 89 34

  70. Kaur D and Khanna S 2011 THEOCHEM 963 71

  71. Kaur D and Khanna S 2012 Struct. Chem. 23 755

  72. Kaur D, Khanna S and Aulakh D 2013 Struct. Chem. 24 357

  73. Kaur D, Sharma R and Aulakh D 2011 Struct. Chem. 22 1015

  74. Syzgantseva O A, Tognetti V and Joubert L 2013 J. Phys. Chem. A 117 8969

  75. Duarte D J, Sosa G L and Peruchena N M 2013 J. Mol. Model. 19 2035

  76. Zeng Y, Zhang X, Li X, Zheng S and Meng L 2010 Int. J. Quantum Chem. 3725

  77. Madzhidov T I, Chmutova G A and Martin Pendas A 2011 J. Phys. Chem. A 115 10069

  78. Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747

  79. Mata I, Alkorta I, Molins E and Espinosa E 2010 Chem. Eur. J. 16 2442

  80. Alkorta I and Elguero J 2004 Struct. Chem. 15 117

  81. Jabloński M and Palusiak M 2012 J. Phys. Chem. A 116 2322

  82. Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113

  83. Moller C and Plesset M S 1934 Phys. Rev. 46 618

  84. Dunning T H 1989 J. Chem. Phys. 90 1007

  85. Wood D E and Dunning T H 1995 J. Chem. Phys. 103 4572

Download references

Acknowledgement

We are highly thankful to the Department of Science and Technology (DST) (INSPIRE Fellowship Programme) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAMANJIT KAUR.

Additional information

Supplementary Information

The differences of the halogen bonding distances between the values in the complex and in the isolated molecule for C-X bond of X-Y molecules and for C=O bond of carbonyl molecules are given in table S1 at MP2/aug-cc-pVDZ level. Tables S2S19 include the optimized parameters for the CH2O and CH3CHO along with their complexes with X-Y (X = Cl, Br; Y = CF3, CF2H, CFH2, CN, CCH and CCCN) at B3LYP/6-31 ++G** and MP2/aug-cc-pVDZ theoretical levels. Table S21 lists the percentage s-character of C in C-X bond of the halogen donors for the monomers and the complexes at MP2/aug-cc-pVDZ level. The atomic charges on the halogen bonding atoms obtained using NBO analysis at MP2/aug-cc-pVDZ level are given in table S22. Figure S1 shows a correlation between SAPT-based interaction energies and interaction energies obtained at MP2/cc-pVDZ level for both CH2O and CH3CHO complexes under study. The optimized parameters for O ⋯I bond complexes of CH2O and CH3CHO at MP2/cc-pVDZ-PP level are reported in tables S23S28.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 831 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KAUR, D., KAUR, R. Theoretical study on O⋯Br and O⋯Cl halogen bonds in some small model molecular systems. J Chem Sci 126, 1763–1779 (2014). https://doi.org/10.1007/s12039-014-0717-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0717-6

Keywords

Navigation