Skip to main content
Log in

Can Satraplatin be hydrated before the reduction process occurs? The DFT computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydration reactions of two anticancer Pt(IV) complexes JM149 and JM216 (Satraplatin) were studied computationally together with the hydration of the Pt(II) complex JM118, which is a product of the Satraplatin reduction. Thermodynamic and kinetic parameters of the reactions were determined at the B3LYP/6-311++G(2df.2pd)//B3LYP/6-31 + G(d)) level of theory. The water solution was modeled using the COSMO implicit solvation model, with cavities constructed using Klamt’s atomic radii. It was found that hydration of the Pt(IV) complexes is an endergonic/endothermic reaction. It follows the (pseudo)associative mechanism is substantially slower (k ≈ 10-11 s−1) than the corresponding reaction of Pt(II) analogues ((k ≈ 10-5 s−1). Such a low value of the reaction constant signifies that the hydration of JM149 and Satraplatin is with high probability a kinetically forbidden reaction. Similarly to JM149 and Satraplatin, the hydration of JM118 is an endothermic/endoergic reaction. On the other hand, the kinetic parameters are similar to those of cisplatin Zimmermann et al. (J Mol Model 17:2385–2393, 2011), allowing the hydration reaction to occur at physiological conditions. These results suggest that in order to become active Satraplatin has to be first reduced to JM118, which may be subsequently hydrated to yield the active species.

Comparison of the reaction profiles of JM216, JM149, JM118, and cisplatin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zimmermann T, Leszczynski J, Burda JV (2011) J Mol Model 17:2385–2393

    Article  CAS  Google Scholar 

  2. Alderden RA, Hall MD, Hambley TW (2006) J Chem Educ 83:728–724

    Article  CAS  Google Scholar 

  3. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127

    Article  CAS  Google Scholar 

  4. Ehrsson H, Wallin I, Yachnin J (2002) Med Oncol 19:261–265

    Article  CAS  Google Scholar 

  5. Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley-VCH Verlag GmbH, Wienheim, 1999

    Google Scholar 

  6. Kasparkova J, Marini V, Najajreh Y, Gibson D, Brabec V (2003) Biochem 42:6321–6332

    Article  CAS  Google Scholar 

  7. Bloemink MJ, Heetebrij RJ, Ireland J, Deacon GB, Reedijk J (1996) J Biol Inorg Chem 1:278–283

    Article  CAS  Google Scholar 

  8. Farrell N, Kelland LR, Roberts JD, Van Beusichem M (1992) Cancer Res 52:5065–5072

    CAS  Google Scholar 

  9. Kasparkova J, Novakova O, Farrell N, Brabec V (2003) Biochemistry 42:792–800

    Article  CAS  Google Scholar 

  10. Deubel DV (2006) J Am Chem Soc 128:1654–1663

    Article  CAS  Google Scholar 

  11. Lau JKC, Deubel DV (2006) J Chem Theory Comput 2:103–106

    Article  CAS  Google Scholar 

  12. Chval Z, Šíp M (2000) J Mol Struct (THEOCHEM) 532:59–68

    Article  CAS  Google Scholar 

  13. Chval Z, Sip M, Burda JV (2008) J Comput Chem 29:2370–2381

    Article  CAS  Google Scholar 

  14. Raber J, Zhu C, Eriksson LA (2005) J Phys Chem 109:11006–11015

    Article  CAS  Google Scholar 

  15. Zhu C, Raber J, Eriksson LA (2005) J Phys Chem B 109:12195–12205

    Article  CAS  Google Scholar 

  16. Costa LA, Hambley TW, Rocha WR, Almeida WB, Dos Santos HF (2006) Int J Quantum Chem 106:2129–2144

    Article  CAS  Google Scholar 

  17. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2003) J Chem Phys 118:10584–10592

    Article  CAS  Google Scholar 

  18. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2005) J Inorg Biochem 99:575–583

    Article  CAS  Google Scholar 

  19. Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) J Inorg Biochem 100:1594–1605

    Article  Google Scholar 

  20. Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054

    Article  CAS  Google Scholar 

  21. Lopes JF, Rocha WR, Dos Santos HF, De Almeida WB (2008) J Chem Phys 128:165103

    Article  Google Scholar 

  22. Lopes JF, Rocha WR, dos Santos HF, de Almeida WB (2010) J Braz Chem Soc 21:887–896

    Article  CAS  Google Scholar 

  23. Carloni P, Sprik M, Andreoni W (2000) J Phys Chem B 104:823–835

    Article  CAS  Google Scholar 

  24. Spiegel K, Rothlisberger U, Carloni P (2004) J Phys Chem B 108:2699–2707

    Article  CAS  Google Scholar 

  25. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  26. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914

    Article  CAS  Google Scholar 

  27. Burda JV, Šponer J, Hrabáková J, Zeizinger M, Leszczynski J (2003) J Phys Chem B 107:5349–5356

    Article  CAS  Google Scholar 

  28. Burda JV, Šponer J, Leszczynski J (2000) J Biol Inorg Chem 5:178–188

    Article  CAS  Google Scholar 

  29. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172

    Article  CAS  Google Scholar 

  30. Zeizinger M, Burda JV, Leszczynski J (2004) Phys Chem Chem Phys 6:3585–3590

    Article  CAS  Google Scholar 

  31. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  32. Zimmermann T, Burda JV (2009) J Chem Phys 131:135101

    Article  Google Scholar 

  33. Zimmermann T, Burda JV (2010) Dalton Trans 39:1295–1301

    Article  CAS  Google Scholar 

  34. Fokkema E, Groen HJM, Helder MN, de Vries EGE, Meijer C (2002) Biochem Pharmacol 63:1989–1996

    Article  CAS  Google Scholar 

  35. Galettis P, Carr JL, Paxton JW, McKeage MJ (1999) J Anal At Spectrom 14:953–956

    Article  CAS  Google Scholar 

  36. Kelland LR, Abel G, McKeage MJ, Jones M, Goddard PM, Valenti M, Murrer BA, Harrap KR (1993) Cancer Res 53:2581–2586

    CAS  Google Scholar 

  37. Goddard PM, Orr RM, Valenti MR, Barnard CF, Murrer BA, Kelland LR, Harrap KR (1996) Anticancer Res 16:33–38

    CAS  Google Scholar 

  38. Poon GK, Mistry P, Raynaud FI, Harrap KR, Murrer BA, Barnard CFJ (1995) J Pharm Biomed Anal 13:1493–1498

    Article  CAS  Google Scholar 

  39. Kelland LR, Sharp SY, O’Neill CF, Raynaud FI, Beale PJ, Judson IR (1999) J Inorg Biochem 77:111–115

    Article  CAS  Google Scholar 

  40. Raynaud FI, Mistry P, Donaghue A, Poon GK, Kelland LR, Barnard CFJ, Murrer BA, Harrap KR (1996) Cancer Chemother Pharmacol 38:155–162

    Article  CAS  Google Scholar 

  41. Farrell N, Povirk LF, Dange Y, DeMasters G, Gupta MS, Kohlhagen G, Khan QA, Pommier Y, Gewirtz DA (2004) Biochem Pharmacol 68:857–866

    Article  CAS  Google Scholar 

  42. Andzelm J, Kolmel C, Klamt A (1995) J Chem Phys 103:9312–9320

    Article  CAS  Google Scholar 

  43. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans:2799–805.

  44. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  45. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1439

    Article  CAS  Google Scholar 

  46. Chval Z, Futera Z, Burda JV (2011) J Chem Phys 134:024520

    Article  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Urban M, Hobza P (1975) Theor Chim Acta 36:207–214

    Article  CAS  Google Scholar 

  49. Urban M, Hobza P (1975) Theor Chim Acta 36:215–220

    Article  CAS  Google Scholar 

  50. Weinhold F (2001) NBO 5.0 Program University of Wisconsin, Madison, Wisconsin 53706, Wisconsin.

  51. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to grant projects of Ministerium of Education ME-10149 and Grant Agency of the Czech Republic No. P208/12/0622 for financial support of this study. Part of the calculations was performed in Meta-supercomputational centers in Prague and Brno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradáč, O., Zimmermann, T. & Burda, J.V. Can Satraplatin be hydrated before the reduction process occurs? The DFT computational study. J Mol Model 19, 4669–4680 (2013). https://doi.org/10.1007/s00894-012-1442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1442-z

Keywords

Navigation