Skip to main content
Log in

Tautomerism in some pyrimidine nucleoside analogues used in the treatment of cancer: an ab initio study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The tautomerism of pyrimidine \(2^\prime\)-deoxynucleoside, 2DN, has fundamental importance to understanding the mechanism of action in DNA replication and consequently to development of new drugs. In this work, the tautomerism of pyrimidine 2DN and some of its analogues with anticancer activity was analyzed along their potential energy surfaces by means of the MP2/cc-aug-pVDZ and QCISD/cc-aug-pVDZ theoretical methods of quantum chemistry. In gas phase and in solvent implicit (water), the energy barriers for hydrogen migration are above of 38.0 kcal/mol while tautomerization energies are between −4.9 and 10.2 kcal/mol. When hydrogen migration is catalyzed by one water molecule, the energy barriers for hydrogen migration are above of 14.2 kcal/mol, and tautomerization energies are found between 3.1 and 7.8 kcal/mol. This finding, supported by equilibrium constant and kinetic data, suggests that both tautomers, canonical and non-canonical, of each 2DN and analogues coexist in monohydrated medium forming mainly Watson–Crick pairs (WC) and some non-WC pairs. However, the calculated interaction energies of the pairs formed by guanine (G) and non-canonical pyrimidine (Pyr*) are higher than those WC pairs formed by G and Pyr, and therefore it is expected that the formation of these non-WC pairs plays an important role in the action of 2DN analogues in DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh JEV, Fedeles BI (2015) RNA 21:1

    Article  Google Scholar 

  2. Watson JD, Crick FH (1953) Nature 171(4356):737

    Article  CAS  Google Scholar 

  3. Harris VH, Smith CL, Cummins WJ, Hamilton AL, Adams H, Dickman M, Hornby DP, Williams DM (2003) J Mol Biol 326(326):1389

    Article  CAS  Google Scholar 

  4. Löwdin PO (1963) Rev Mod Phys 35(3):724

    Article  Google Scholar 

  5. Löwdin PO (1966) Adv Quantum Chem 2:213

    Article  Google Scholar 

  6. Topal MD, Fresco JR (1963) Nature 263:285

    Article  Google Scholar 

  7. Topal MD, Fresco JR (1963) Nature 171(5577):289

    Google Scholar 

  8. Mejía-Mazariegos L, Hernández-Trujillo J (2009) Chem Phys Lett 482(1–3):24

    Article  Google Scholar 

  9. Wang W, Hellinga HW, Beese LS (2011) Proc Natl Acad Sci 108(43):17644

    Article  CAS  Google Scholar 

  10. Demeshkinaa N, Jennera L, Westhofd E, Yusupova M, Yusupova G (2013) FEBS Lett 587(13):1848

    Article  Google Scholar 

  11. Drake JW (1970) The molecular bases of mutations, 1st edn. Holden-Day, San Francisco

    Google Scholar 

  12. Marnett LJ (1999) Mutat Res 424(1–2):83

    Article  CAS  Google Scholar 

  13. Parker WB (2009) Chem Rev 109(7):2880

    Article  CAS  Google Scholar 

  14. Deepa S, An RVA, William P (2003) Oncogene 22:9063

    Article  Google Scholar 

  15. Gojkovic Z, Karlsson A (2007) Deoxynucleoside analogs in cancer therapy. In: Peters GJ (ed) Cancer drug discovery and development. Humana Press, Totowa, New Jersey, pp 403–439

    Google Scholar 

  16. Galmarini CM, Mackey JR, Dumontet C (2002) Lancet Oncol 3(7):415

    Article  CAS  Google Scholar 

  17. Malińska M, Krzeczyński P, Czerniec-Michalik E, Trzcińska K, Cmoch P, Kutner A, Woźniak K (2014) J Pharm Sci 103(2):1520

    Google Scholar 

  18. Katritzky AR, Hall CD, El-Gendy BEDM, Draghici B (2010) J Comput Aided Mol Des 24(6–7):475

    Article  CAS  Google Scholar 

  19. Martin YC (2009) J Comput Aided Mol Des 23(10):693

    Article  CAS  Google Scholar 

  20. Milletti F, Vulpetti A (2010) J Chem Inf Model 50(6):1062

    Article  CAS  Google Scholar 

  21. Sayle RA (2010) J Comput Aided Mol Des 24(6–7):485

    Article  CAS  Google Scholar 

  22. Wang J, Tang WJ, Ye LL, Zhang LD, Pan Y (2013) Chin J Chem Phys 26(1):20

    Article  CAS  Google Scholar 

  23. Palafox MA, Iza N (2010) Phys Chem Chem Phys 12(4):881

    Article  Google Scholar 

  24. Kumar V, Kishor S, Ramaniah LM (2012) J Mol Model 18(8):3969

    Article  CAS  Google Scholar 

  25. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8(17):1985

    Article  CAS  Google Scholar 

  26. Saenger W (1984) Principles of nucleic acid structure, 1st edn. Springer, Berlin

    Book  Google Scholar 

  27. Foloppe N, MacKerell AD (1999) Biophys J 76(6):3206

    Article  CAS  Google Scholar 

  28. Foloppe N, Hartmann B, Nilsson L, MacKerell AD (2002) Biophys J 82(3):1554

    Article  CAS  Google Scholar 

  29. For gemcitabine (FFdC): http://xray.bmc.uu.se/hicup/GEO/ for cytarabine (araC), http://www.chemspider.com/Chemical-Structure.6017.html?rid=fd31f645-3101-4eba-9fd8-8c7e75e03640 and for azacytidine or vidaza (aza-dC): http://www.chemspider.com/Chemical-Structure.9072.html

  30. Boys S, Bernardi F (1970) Mol Phys 19(4):553

    Article  CAS  Google Scholar 

  31. Mentel LM, Baerends EJ (2014) J Chem Theory Comput 10(1):252

    Article  CAS  Google Scholar 

  32. Rezac J, Hobza P (2016) Chem Rev 116(9):5038

    Article  CAS  Google Scholar 

  33. McDowell SAC, Joseph JA (2014) Phys Chem Chem Phys 16:10854

    Article  CAS  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules. A Quantum Theory. In: Rowlinson JS (ed) International series of monographs on chemistry, vol 22. Clarendon Press, Oxford

  35. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999

    Article  CAS  Google Scholar 

  36. Kabelac M, Hobza P (2007) Phys Chem Chem Phys 9(8):903

    Article  CAS  Google Scholar 

  37. Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106(11):4518

    Article  Google Scholar 

  38. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14(11):134

    Article  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  40. Keith TA (2014) AIMAll (Version 14.06.21). TK Gristmill Software, Overland Park KS, USA

  41. Biegler-König F, Schnbohm J (2002) J Comput Chem 23(15):1489

    Article  Google Scholar 

  42. Mazurkiewicz K, Bachorz RA, Gutowski M, Rak J (2006) J Phys Chem B 110(48):24696

    Article  CAS  Google Scholar 

  43. Kobayashi R (1998) J Phys Chem A 102(52):10813

    Article  CAS  Google Scholar 

  44. Ibon Alkorta JE, Goya P, Singh SP (2007) Natl Acad Sci Lett 30(5):139

    Google Scholar 

  45. Raczyńska ED, Kosińska W, Ośmialowski B, Gawinecki R (2005) Chem Rev 105(10):3561

    Article  Google Scholar 

  46. Stanovnik B, Tisler M, Katritzky AR, Denisko OV (2006) The tautomerism of heterocycles: substituent tautomerism of six-membered ring heterocycles. In: Katritzky AR (ed) Advances heterocyclic chemistry, vol 91. Academic Press, pp 1–134

  47. Elguero J, Katritzky AR, Denisko OV (2000) Prototropic tautomerism of heterocycles: heteroaromatic tautomerism—general overview and methodology. In: Katritzky AR (ed) Advances heterocyclic chemistry, vol 76. Academic Press, pp 1–84

  48. Galvão TLP, Rocha IM, Ribeiro da Silva MDMC, Ribeiro da Silva MAV (2013) J. Phys. Chem. A 117(47):12668

    Article  Google Scholar 

  49. Kulakowska I, Geller M, Lesyng B, Wierzchowski K (1974) Biochim Biophys Acta (BBA) Nucleic Acids Protein Synth 361(2):119

    Article  CAS  Google Scholar 

  50. Párkányi C, Boniface C, Aaron JJ, Gaye MD, Ghosh R, von Szentpály L, RaghuVeer KS (1992) Struct Chem 3(4):277

    Article  Google Scholar 

  51. Manzur M, Romano E, Vallejo S, Wesler S, Suvire F, Enriz R, Molina M (2001) J Mol Liq 94(2):87

    Article  CAS  Google Scholar 

  52. Antonov L (ed) (2013) Tautomerism: methods and theories, Wiley-VCH Verlag GmbH, Co. KGaA, Weinheim

  53. Chekhlov A (1995) J Struct Chem 36(1):155

    Article  Google Scholar 

  54. Young DW, Wilson HR (1975) Acta Crystallogr Sect B Struct Sci 31(4):961

    Article  Google Scholar 

Download references

Acknowledgments

Guanajuato National Laboratory (CONACyT 123732) is acknowledged for supercomputing resources. The authors thank Igor I. Slowing and Marisol García-Reyes for helpful comments and suggestions. L. M-M (CVU 236809 ) thanks CONACyT for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. García-Revilla.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 645 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejía-Mazariegos, L., Robles, J. & García-Revilla, M.A. Tautomerism in some pyrimidine nucleoside analogues used in the treatment of cancer: an ab initio study. Theor Chem Acc 135, 233 (2016). https://doi.org/10.1007/s00214-016-1985-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1985-7

Keywords

Navigation