Skip to main content
Log in

Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The thermodynamics of cisplatin and transplatin hydration is studied within the model of constant pH solution. Several implicit solvation models were chosen for the determination of pKa and pK constants of the hydration reactions. The polarizable dielectric model (DPCM), integral equation formalism polarizable model (IEFPCM), and polarizable conductor model (CPCM) were combined with the ‘united atom model for Hartree-Fock’ (UAHF) method for cavity construction and the B3LYP/6-31++G(2dp,2pd) level of calculations for the determination of electronic energies. The results were compared with the COSMO-RS and SM8 model developed by Truhlar (with M06 and MPWX functionals and the charge model CM4). The RMS difference between experimental and calculated pKa values of cis/transplatin, water, HCl, and NH +4 was used to evaluate accuracy of calculations. The DPCM model was confirmed to perform the best. The predicted pKa constants were used in Legendre transformation for the estimation of the ΔG’ energies in the constant-pH model. The dependence of the pK constant on pH is plotted and compared with experimental value at pH=7.4. The influence of various chloride concentrations on the molar fractions of dissolved forms of cisplatin is examined for the DPCM model. The increased ratio of cisplatin active aqua-forms is clearly visible for 4 mM chloride solution in comparison with 104 mM Cl- concentration.

Molar fractions of dissolved cisplatin complexes in dependence on pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hindmarsh K, House DA, Turnbull MM (1997) Inorg Chim Acta 257:11–18

    Article  CAS  Google Scholar 

  2. Arpalahti J, Mikola M, Mauristo S (1993) Inorg Chem 32:3327–3333

    Article  CAS  Google Scholar 

  3. Mikola M, Arpalahti J (1994) Inorg Chem 33:4439–4445

    Article  CAS  Google Scholar 

  4. Martin RB (1999) In: Lippert B (ed) Cisplatin. Wiley-VCH, Weinheim, pp 183–206

    Google Scholar 

  5. Berners-Price SJ, Frenkiel TA, Frey U, Randolf JD, Sadler PJ (1992) J Chem Soc Chem Commun789-795

  6. Orton DM, Gretton VA, Green M (1993) Inorg Chim Acta 204:265–278

    Article  CAS  Google Scholar 

  7. Appleton TG, Bailey AJ, Barnham KJ, Hall JR (1992) Inorg Chem 31:3077–3091

    Article  CAS  Google Scholar 

  8. Mikola M, Arpalahti J (1996) Inorg Chem 35:7556–7564

    Article  CAS  Google Scholar 

  9. Lippert B (1999) Cisplatin: Chem. and Biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim, Germany

  10. Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Chval Z, Sip M, Burda JV (2008) J Comput Chem 29:2370–2381

    Article  CAS  Google Scholar 

  12. Schmuelling M, Lippert B, van Eldik R (1994) Inorg Chem 33:3276–3282

    Article  CAS  Google Scholar 

  13. Bradáč O, Zimmermann T, Burda J (2008) J Mol Model 14:705–716

    Article  Google Scholar 

  14. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6867

    Article  CAS  Google Scholar 

  15. Bernges F, Doerner G, Holler E (1990) Eur J Biochem 191:743–747

    Article  CAS  Google Scholar 

  16. Bernges F, Holler E (1991) Nucleic Acids Res 19:1483–1498

    Article  CAS  Google Scholar 

  17. Arpalahti J (1996) In: Sigel ASH (ed) Metal Ions in Biological Systems. Dekker, New York, p 380–395

  18. Jestin JL, Lambert B, Chottard JC (1998) J Biol Inorg Chem 3:515–519

    Article  CAS  Google Scholar 

  19. Mudroch P del S, Guo Z, Parkinson JA, Sadler PJ (1999) J Biol Inorg Chem 4:32–38

    Article  Google Scholar 

  20. Lemma K, Shi T, Elding LI (2000) Inorg Chem 39:1728–1734

    Article  CAS  Google Scholar 

  21. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:253–1262

    Article  Google Scholar 

  22. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 29:907–914

    Article  Google Scholar 

  23. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  24. Zeizinger N, Burda JV, Sponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092

    Article  CAS  Google Scholar 

  25. Zhang Y, Guo Z, You XZ (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  26. Robertazzi A, Platts JA (2004) J Comput Chem 25:1060–1067

    Article  CAS  Google Scholar 

  27. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2004) Chem Phys Lett 387:182–187

    Article  CAS  Google Scholar 

  28. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2003) J Chem Phys 118:10584–10592

    Article  CAS  Google Scholar 

  29. Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054

    Article  CAS  Google Scholar 

  30. Lopes JF, Rocha WR, Dos Santos HF, De Almeida WB (2008) J Chem Phys 128:165103

    Article  Google Scholar 

  31. Lopes JF, Rocha WR, dos Santos HF, de Almeida WB (2010) J Braz Chem Soc 21:887–896

    Article  CAS  Google Scholar 

  32. Chojnacki H, Kuduk-Jaworska J, Jaroszewicz I, Janski JJ (2009) Pol J Chem 83:1013–1024

    CAS  Google Scholar 

  33. Fu CF, Tian SX (2010) J Chem Phys 132: 174507

    Google Scholar 

  34. Banerjee S, Sengupta PS, Mukherjee AK (2010) Chem Phys Lett 497:142–148

    Article  CAS  Google Scholar 

  35. Lucas MFA, Pavelka M, Alberto ME, Russo N (2009) J Phys Chem B 113:831–838

    Article  CAS  Google Scholar 

  36. Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13:10108–10116

    Article  CAS  Google Scholar 

  37. Beret EC, Pappalardo RR, Marx D, Marcos ES (2009) Chem Phys Chem 10:1044–1052

    CAS  Google Scholar 

  38. Dans PD, Coitino EL (2009) J Chem Inf Model 49:1407–1419

    Article  CAS  Google Scholar 

  39. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  40. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  41. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  42. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1447

    Article  CAS  Google Scholar 

  43. Zimmermann T, Burda JV (2009) J Chem Phys 131:135101

    Article  Google Scholar 

  44. Higashi M, Marenich AV, Olson RM, Chamberlin AC, Pu J, Kelly CP, Thompson JD, Xidos JD, Li J, Zhu T, Hawkins GD, Chuang Y-Y, Fast PL, Lynch BJ, Liotard DA, Rinaldi D, Gao J, Cramer CJ, Truhlar DG (2009) GAMESSPLUS, version 2009. University of Minnesota, Minneapolis

    Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1361

    Article  CAS  Google Scholar 

  46. Adamo C, Barone V (1998) J Chem Phys 108:66–82

    Article  Google Scholar 

  47. Perdew JP (1991) In: Zieesche P, Eshrig H (eds) Electronic Structure of Solids. Akademie, Berlin

    Google Scholar 

  48. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2019

    Article  CAS  Google Scholar 

  49. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2799–2805

  50. Klamt A (1998) In: Schleyer PvR (ed) Encyclopedia Computational Chemistry. Wiley, Chichester

    Google Scholar 

  51. Klamt A, Eckert F, Hornig M, Beck ME, Burger T (2002) J Comput Chem 23:275–281

    Article  CAS  Google Scholar 

  52. Alberty RA (2001) Pure Appl Chem 73:1349–1380

    Article  CAS  Google Scholar 

  53. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  54. Ginovska B, Camaioni DM, Dupuis M (2007) J Chem Phys 127:084309

    Article  Google Scholar 

  55. Ginovska B, Camaioni DM, Dupuis M (2008) J Chem Phys 129:014506

    Article  Google Scholar 

  56. Ginovska B, Camaioni DM, Dupuis M, Schwerdtfeger CA, Gil QJ (2008)Phys Chem A 112:10604–10613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of Ministry of Education of the Czech Republic: MSM 0021620835 and ME10149, and GAČR No. P205/10/0228. The computational resources from Faculty of Mathematics and Physics are acknowledged for access to their excellent computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, T., Leszczynski, J. & Burda, J.V. Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study. J Mol Model 17, 2385–2393 (2011). https://doi.org/10.1007/s00894-011-1031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1031-6

Keywords

Navigation