Skip to main content
Log in

Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Overactivation of the N-methyl-D-aspartate receptor (NMDAR) in postsynaptic neurons leads to glutamate-related excitotoxicity in the central nervous system of mammals. We have built 3-D models of each domain for the universal screening of potential toxicants and their binding mechanisms. Our docking results show that the calculated pK i values of glycine and L-glutamate significantly increase (>1) when the NR1 and NR2A S1S2 domains are closing, respectively. Inversely, D-cycloserine (DCS) and 5,7-dichlorokynurenic acid (5,7-DCKA) do not show such a dependence on domain closure. Replica exchange molecular dynamics (REMD) confirmed 5 different conformational states of the S1S2 domain along the 308.2 K temperature trajectory. Analysis of residue fluctuations during this temperature trajectory showed that residues in loop 1, loop 2, the amino terminal domain (ATD), and the area linked to ion channel α-helices are involved in this movement. This further implicates the notion that efficacious ligands act through S1S2 lobe movement which can culminate in the opening or closing of the ion channel. We further tested this by docking hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) to the S1S2 domain. Our results predict that these nitramines are not efficacious and thus do not produce excitoxicity when they bind to the S1S2 domain of the NMDAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lipton SA, Nicotera P (1998) Cell Calcium 23:165–171

    Article  CAS  Google Scholar 

  2. Choi YB, Tenneti L, Le D, Ortiz J, Bai G, Chen HSV, Lipton S (2000) Nat Neurosci 3:15–21

    Article  CAS  Google Scholar 

  3. Meldrum B, Garthwaite J (1990) Trends Pharmacol Sci 11:379–387

    Article  CAS  Google Scholar 

  4. Rothman SM, Olney JW (1987) Trends Neurosci 10:299–302

    Article  CAS  Google Scholar 

  5. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) Pharmacol Rev 51(1):7–61

    CAS  Google Scholar 

  6. Liu Y, Zhang J (2000) Chin Med J 113:948–956

    CAS  Google Scholar 

  7. Cull-Candy S, Brickley S, Farrant M (2001) Curr Opin Neurobiol 11:327–335

    Google Scholar 

  8. Paoletti P, Neyton J (2007) Curr Opin Pharmacol 7:39–47

    Article  CAS  Google Scholar 

  9. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  10. Hebb DO (1961) Brain mechanisms and learning. Oxford University Press, London

  11. Schorge S, Colquhoun D (2003) J Neurosci 23:1151–1158

    CAS  Google Scholar 

  12. Chatterton E, Awobuluyi M, Premkumar LS (2002) Nature 415:793–798

    Article  CAS  Google Scholar 

  13. Furukawa H, Gouaux E (2003) EMBO J 22:2873–2885

    Article  CAS  Google Scholar 

  14. Inanobe A, Furukawa H, Gouaux E (2005) Neuron 47:71–84

    Article  CAS  Google Scholar 

  15. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Nature 438:185–192

    Article  CAS  Google Scholar 

  16. Chen HSV, Lipton SA (2005) JPET 314:961–971

    Article  CAS  Google Scholar 

  17. Kaye SL, Sansom MSP, Biggin PC (2006) J Biol Chem 281:12736–12742

    Article  CAS  Google Scholar 

  18. Mamonova T, Speranskiy K, Kurnikova M (2008) Proteins 73:656–671

    Google Scholar 

  19. Chohan KK, Wo ZG, Oswald RE, Sutcliffe MJ (2000) J Mol Model 6:16–25

    Article  CAS  Google Scholar 

  20. Sutcliffe MJ, Smeeton AH, Wo ZG, Oswald RE (1998) Faraday Discuss 111:259–272

    Article  CAS  Google Scholar 

  21. Gong P, Basu N, Scheuhammer AM, Perkins EJ (2010) Environ Sci Pollut Res Int 17:181–186

    Article  CAS  Google Scholar 

  22. Neal AP, Worley PF, Guilarte TR (2011) Neurotoxicology 32:281–289

    Article  CAS  Google Scholar 

  23. Nayyar T, Wu J, Hood DB (2003) Cell Mol Biol (Noisy-le-grand) 49:1357–1362

    CAS  Google Scholar 

  24. Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for RDX. Agency for Toxic Substances and Disease Registry, Atlanta

  25. Bartha R, Hsu T (1974) Soil Science 115:444–453

    Google Scholar 

  26. Jenkins TF, Walsh ME (1992) Talanta 39:419–428

    Article  CAS  Google Scholar 

  27. Carpenter BH, Liepins R, Sickles J II, Hamilton HL, van Osdell DW (1978) SmartMedia 284:A221060

    Google Scholar 

  28. Barsotti M, Crofti G (1949) Med Lav 40:107–112

    CAS  Google Scholar 

  29. Burdette LJ, Cook LL, Dyer RS (1988) Toxicol Appl Pharmacol 92:436–444

    Article  CAS  Google Scholar 

  30. Crouse LC, Michie MW, Major MA et al (2006) Subchronic oral toxicity of RDX in rats. Elsevier, Amsterdam, pp 619–638

  31. Schneider NR, Bradley SR, Andersen ME (1978) Toxicol Appl Pharmacol 46:1163–1171

    Article  Google Scholar 

  32. McCain WC, Ferguson JW (1998) Toxicol study 2340-38-95-6-1. US Army Center for Health Promotion and Preventative Medicine, Aberdeen Proving Ground

  33. Major MA, Reddy G, Berge MA, Patzer S, Li AC, Gohdes M (2007) J Toxocol Environ Health 70:1191–1202

    Article  CAS  Google Scholar 

  34. Quinn MJ Jr, McFarland CA, Johnson MS (2009) Toxicol Mech Methods 19:1537–6524

    Article  Google Scholar 

  35. McFarland CA, Quinn MJ Jr, Bazar MA, Remick AK, Talent LG, Johnson MS (2008) Environ Toxicol Chem 27:1102–1111

    Article  CAS  Google Scholar 

  36. Williams LR, Aroniadou-Anderjaska V, Qashu F, Finne H, Pidoplichko V et al (2011) Environ Health Perspect 119:357–363

    Google Scholar 

  37. Bannon DI, Dillman JF, Hable MA, Phillips CS, Perkins E (2009) J Chem Res Toxicol 22:620–625

    Article  CAS  Google Scholar 

  38. Karp SJ, Masu M, Eki T, Ozawa K, Nakanishi SJ (1993) Biol Chem 268:3728–3733

    CAS  Google Scholar 

  39. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Proc Natl Acad Sci USA 104:2199–2204

    Google Scholar 

  40. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  41. Edgar RC (2004) Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  42. Melo F, Feytmans E (1997) J Mol Biol 267:207–222

    Article  CAS  Google Scholar 

  43. Lüthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Google Scholar 

  44. Case DA, Darden TA, Cheatham TE III et al (2008) AMBER10. University of California, San Francisco

  45. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.1. Gaussian Inc., Wallingford

  47. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  48. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A (2002) Bankston LA 25:474–480

    CAS  Google Scholar 

  49. Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HSV, Lipton SA (2007) Neuron 53:53–64

    Article  CAS  Google Scholar 

  50. Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJA (2005) Mol Pharmacol 67:1470–1484

    Article  CAS  Google Scholar 

  51. Blaise MC, Sowdhamini R, Pradhan N (2005) J Mol Model 11:489–502

    Article  CAS  Google Scholar 

  52. Yao Y, Mayer ML (2006) J Neurosci 26:4559–4566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jacques Reifmann and the rest of his group at The Biotechnology High Performance Computing Software Application Institute (BHSAI) for their generous allotment of time, and the Army Research Laboratory (ARL) for the use of their computational resources. This work has been done under grant number W912HZ-09-C-0026. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. Results in this study were funded and obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the US Army ERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Ford-Green.

Additional information

This work was performed at the Environmental Laboratory of the US Army Engineer Research and Development Center (ERDC) in Vicksburg, MS 39180, USA

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

a Ramachandran plot of the NR1 S1S2 3-D model before simulation. b Ramachandran plot of the NR2A S1S2 3-D model before simulation. c Ramachandran plot of the X-ray crystal structure 1pbq chain A [14]. (DOC 102 kb)

Fig. S2

Root mean square deviation (RMSD in Å) versus time (ps) plots of a NR1 S1S2 3-D model over 4 ns and b NR2A S1S2 3-D model over 3 ns. Due to the increased flexibility observed for loops 1 and 2, the amino terminus (N), and the GT-linker regions of the NR1 S1S2 model we switched from a 2 fs time step to a 1 fs time step for the simulation of the NR2A S1S2 model. All simulations were done using the GB implicit solvent potential at 300K in the AMBER10 package. (DOC 76 kb)

Fig. S3

Backbone alignment of the NR1 open structure from a classical MD simulation (blue) and the NR1 E conformer (tan) from the REMD simulation (5.20 Å RMSD) (DOC 84 kb)

Table S1

Comparison of inhibition constants for the five different REMD conformations (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford-Green, J., Isayev, O., Gorb, L. et al. Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor. J Mol Model 18, 1273–1284 (2012). https://doi.org/10.1007/s00894-011-1152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1152-y

Keywords

Navigation