Skip to main content
Log in

Computational characterization of the glutamate receptor antagonist perampanel and its close analogs: density functional exploration of conformational space and molecular docking study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Perampanel approved by FDA in 2012 is a first-in-class antiepileptic drug which inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor currents. It is markedly more active than many of its close analogs, and the reasons for this activity difference are not quite clear. Recent crystallographic studies allowed the authors to identify the location of its binding site. Unfortunately, the resolution is low, and the detailed description of perampanel binding mode is still in part speculative. Here we provide a detailed DFT-level conformational analysis of perampanel in a vacuum and in the solvents, mimicking the protein environment, followed by quantum theory of atoms in molecules (QTAIM), non-covalent interactions (NCI), and natural bond orbital (NBO) analyses. The findings indicate the electrostatic nature of the intramolecular interactions which contribute to energy differences of the conformations in a vacuum whereas the increase of dielectric constant leads to the energy equalization of conformations. Based on these results, the docking study was performed to investigate possible binding modes of perampanel and its close analogs in AMPA receptors. The influence of the pyridine nitrogen and cyano group position was explained based on the results of conformational analysis and molecular docking. These findings may contribute to the design of novel antiepileptic drugs and the development of novel approaches to treat neurodegenerative diseases and major depressive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Swanson GT (2009) Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology 34:249–250

    CAS  PubMed  Google Scholar 

  3. Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, Leroi I, Pozo-Rodriguez F, Minthon L, Londos E (2009) Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol 8:613–618

    CAS  PubMed  Google Scholar 

  4. Petrenko AB, Yamakura T, Baba H, Shimoji K (2003) The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 97:1108–1116

    CAS  PubMed  Google Scholar 

  5. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    CAS  PubMed  Google Scholar 

  7. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    CAS  PubMed  Google Scholar 

  8. Hibi S, Ueno K, Nagato S, Kawano K, Ito K, Norimine Y, Takenaka O, Hanada T, Yonaga M (2012) Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. J Med Chem 55:10584–10600

    CAS  PubMed  Google Scholar 

  9. Frampton JE (2015) Perampanel: a review in drug-resistant epilepsy. Drugs 75:1657–1668

    CAS  PubMed  Google Scholar 

  10. Silla JM, Silva DR, Freitas MP (2017) Theoretical study on the conformational bioeffect of the fluorination of acetylcholine. Mol Inform 36:1700084

    Google Scholar 

  11. Horvath D, Marcou G, Varnek A (2018) Monitoring of the conformational space of dipeptides by generative topographic mapping. Mol Inform 36:1700115

    Google Scholar 

  12. Yelshanskaya MV, Singh AK, Sampson JM, Narangoda C, Kurnikova M, Sobolevsky AI (2016) Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 91:1305–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI (2017) Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549:60–65

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barygin OI, Grishin EV, Tikhonov DB (2011) Argiotoxin in the closed AMPA receptor channel: experimental and modeling study. Biochemistry 50:8213–8220

    CAS  PubMed  Google Scholar 

  15. Elhallaoui M, Laguerre M, Carpy A, Ouazzani FC (2002) Molecular modeling of noncompetitive antagonists of the NMDA receptor: proposal of a pharmacophore and a description of the interaction mode. J Mol Model 8:65–72

    CAS  PubMed  Google Scholar 

  16. Karlov DS, Lavrov MI, Palyulin VA (2016) Pharmacophore analysis of positive allosteric modulators of AMPA receptors. Russ Chem Bull 65:581–587

    CAS  Google Scholar 

  17. Karlov DS, Lavrov MI, Palyulin VA, Zefirov NS (2018) MM-GBSA and MM-PBSA performance in activity evaluation of AMPA receptor positive allosteric modulators. J Biomol Struct Dyn 36:2508–2516

    CAS  PubMed  Google Scholar 

  18. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    CAS  Google Scholar 

  19. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:e1327

    Google Scholar 

  20. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    CAS  PubMed  Google Scholar 

  21. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046

    CAS  Google Scholar 

  23. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351

    CAS  Google Scholar 

  24. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257–2261

    CAS  Google Scholar 

  25. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    CAS  Google Scholar 

  26. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    CAS  Google Scholar 

  27. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  28. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    CAS  PubMed  Google Scholar 

  29. Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree-Fock exchange. Chem Phys 35:98–109

    Google Scholar 

  30. Neese F, Olbrich G (2002) Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals. Chem Phys Lett 362:170–178

    CAS  Google Scholar 

  31. Stoychev GL, Auer AA, Neese F (2017) Automatic generation of auxiliary basis sets. J Chem Theory Comput 13:554–562

    CAS  PubMed  Google Scholar 

  32. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract Eur 2:91–104

    CAS  Google Scholar 

  33. Nikolaienko TY, Bulavin LA, Hovorun DM (2014) JANPA: an open source cross-platform implementation of the Natural Population Analysis on the Java platform. Comput Theor Chem 1050:15–22

    CAS  Google Scholar 

  34. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    CAS  Google Scholar 

  35. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 32:455–461

    Google Scholar 

  39. OEDOCKING 3.3.0.3: OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com. Accessed 01.09.2019

  40. McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51:578–596

    CAS  PubMed  Google Scholar 

  41. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26:897–906

    CAS  PubMed  Google Scholar 

  42. Kaufmann KW, Meiler J (2012) Using RosettaLigand for small molecule docking into comparative models. PLoS One 7:e50769

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nivón LG, Moretti R, Baker D (2013) A Pareto-optimal refinement method for protein design scaffolds. PLoS One 8:e59004

    PubMed  PubMed Central  Google Scholar 

  44. Rosetta Ligand Dock Application. https://www.rosettacommons.org/docs/latest/application_documentation/docking/ligand-dock. Accessed 01.09.2019

  45. Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385:381–392

    CAS  PubMed  Google Scholar 

  46. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The academic license for OpenEye software was kindly provided by OpenEye Scientific Software Inc. to Dr. Vladimir A. Palyulin laboratory.

Funding

This work was supported by the Russian Science Foundation under Grant No. 18-75-00077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Karlov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseynov, AA.D., Pisarev, S.A., Shulga, D.A. et al. Computational characterization of the glutamate receptor antagonist perampanel and its close analogs: density functional exploration of conformational space and molecular docking study. J Mol Model 25, 312 (2019). https://doi.org/10.1007/s00894-019-4188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4188-z

Keywords

Navigation