Skip to main content
Log in

Exploration of structural and physicochemical properties of small molecules to inhibit NMDA functionality

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The N-methyl-D-aspartate (NMDA) is the family of glutamate receptor, which is involved in controlling synaptic plasticity and memory function; but overactivation of this receptor results to excess intracellular calcium formation, triggers neuronal injury and also involves in several pathologies. Both ligand- and structure-based quantitative structure-activity relationship (QSAR), pharmacophore, docking and simulation studies have been performed on a set of structurally diverse inhibitors to explore prime molecular structural features involve for specific binding to NMDA, and vis-à-vis inhibiting enzyme activity. 3D QSAR studies, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models showed the importance of steric, electrostatic and hydrophobic features; while hydrogen bond acceptor and hydrophobic features are depicted as important pharmacophore features of the molecule. Molecular docking and simulation studies corroborated the consequence of the features obtained from ligand-based Bayesian model (AUROCcv = 0.878); 3D QSAR CoMFA (R2 = 0.895, se = 0.513, Q2 = 0.602, R2pred = 0.673); CoMSIA (R2 = 0.877, se = 0.555, Q2 = 0.615, R2pred = 0.727); hologram QSAR (Q2 = 0.812, R2 = 0.941, R2pred = 0.772), and pharmacophore models (Q2 = 0.926, R2 = 0.927, R2pred = 0.621). Presence of aromatic ring, hetero and halogen atoms along with alkyl group of molecular scaffold shows their importance for binding affinity to NMDA receptor. Stability of the complex is adjudged by both docking and simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gitto R, De Luca L, Ferro S, Occhiuto F, Samperi S, De Sarro G, Russo E, Ciranna L, Costa L, Chimirri A (2008) Computational studies to discover a new NR2B/NMDA receptor antagonist and evaluation of pharmacological profile. ChemMedChem 3:1539–1548

    Article  CAS  PubMed  Google Scholar 

  2. Gitto R, De Luca L, Ferro S, Citraro R, De Sarro G, Costa L, Ciranna L, Chimirri A (2009) Development of 3-substituted-1H-indole derivatives as NR2B/NMDA receptor antagonists. Bioorganic Med Chem 17:1640–1647

    Article  CAS  Google Scholar 

  3. Yosa J, Blanco M, Acevedo O, Lareo LR (2009) Molecular orbital differentiation of agonist and antagonist activity in the GlycineB-iGluR-NMDA receptor. Eur J Med Chem 44:2960–2966

    Article  CAS  PubMed  Google Scholar 

  4. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595

    Article  CAS  PubMed  Google Scholar 

  6. Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97:1611–1626

    Article  CAS  PubMed  Google Scholar 

  7. Farlow MR (2004) NMDA receptor antagonists. A new therapeutic approach for Alzheimer’s disease. Geriatrics 59:22–27

    PubMed  Google Scholar 

  8. Kubinyi H (1997) QSAR and 3D QSAR in drug design. Drug Discov Today 2:457–467

    Article  CAS  Google Scholar 

  9. Zambre VP, Hambarde VA, Petkar NN, Patel CN, Sawant SD (2015) Structural investigations by in silico modeling for designing NR2B subunit selective NMDA receptor antagonists. RSC Adv 5:23922–23940

    Article  CAS  Google Scholar 

  10. Ugale VG, Bari SB (2016) Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies. SAR QSAR Environ Res 27:125–145

    Article  CAS  PubMed  Google Scholar 

  11. Avram S, Maria M, Bagci E, Hritcu L, Borcan LC, Mihailescu D (2017) Advanced structure-activity relationships applied to Mentha spicata L. subsp. spicata essential oil compounds as AChE and NMDA ligands, in comparison with donepezil, galantamine and memantine—new approach in brain disorders pharmacology. CNS Neurol Disord Drug Targets 16:800–811

    Article  CAS  PubMed  Google Scholar 

  12. Abreu PA, Castro HC, Paes-de-Carvalho R, Rodrigues CR, Giongo V, Paixao IC, Santana MV, Ferreira JM, Caversan OM, Leao RA, Marins LM, Henriques AM, Farias FM, Albuquerque MG, Pinheiro S (2013) Molecular modeling of a phenyl-amidine class of NMDA receptor antagonists and the rational design of new triazolyl-amidine derivatives. Chem Biol Drug Des 81:185–197

    Article  CAS  PubMed  Google Scholar 

  13. Buyukbingol E, Sisman A, Akyildiz M, Alparslan FN, Adejare A (2007) Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists. Bioorganic Med Chem 15:4265–4282

    Article  CAS  Google Scholar 

  14. Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS (2003) CoMFA and homology-based models of the glycine binding site of N-methyl-d-aspartate receptor. J Med Chem 46:1609–1616

    Article  CAS  PubMed  Google Scholar 

  15. Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS (2004) 3D-model of the ion channel of NMDA receptor: qualitative and quantitative modeling of the blocker binding. Doklady 396:181–186

    Article  CAS  PubMed  Google Scholar 

  16. Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont ML, Fox CB, Mena EE et al (1995) (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J Med Chem 38:3138–3145

    Article  CAS  PubMed  Google Scholar 

  17. Ornstein PL, Schoepp DD, Arnold MB, Leander JD, Lodge D, Paschal JW, Elzey T (1991) 4-(Tetrazolylalkyl)piperidine-2-carboxylic acids. Potent and selective N-methyl-D-aspartic acid receptor antagonists with a short duration of action. J Med Chem 34:90–97

    Article  CAS  PubMed  Google Scholar 

  18. Varano F, Catarzi D, Colotta V, Filacchioni G, Galli A, Costagli C, Carla V (2002) Synthesis and biological evaluation of a new set of pyrazolo[1,5-c]quinazoline-2-carboxylates as novel excitatory amino acid antagonists. J Med Chem 45:1035–1044

    Article  CAS  PubMed  Google Scholar 

  19. Fray MJ, Bull DJ, Carr CL, Gautier EC, Mowbray CE, Stobie A (2001) Structure-activity relationships of 1,4-dihydro-(1H,4H)-quinoxaline-2,3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives. J Med Chem 44:1951–1962

    Article  CAS  PubMed  Google Scholar 

  20. Kinney WA, Abou-Gharbia M, Garrison DT, Schmid J, Kowal DM, Bramlett DR, Miller TL, Tasse RP, Zaleska MM, Moyer JA (1998) Design and synthesis of [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)-ethyl]phosphonic acid (EAA-090), a potent N-methyl-D-aspartate antagonist, via the use of 3-cyclobutene-1,2-dione as an achiral alpha-amino acid bioisostere. J Med Chem 41:236–246

    Article  CAS  PubMed  Google Scholar 

  21. Torres E, Duque MD, Lopez-Querol M, Taylor MC, Naesens L, Ma C, Pinto LH, Sureda FX, Kelly JM, Vazquez S (2012) Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities. Bioorganic Med Chem 20:942–948

    Article  CAS  Google Scholar 

  22. Varano F, Catarzi D, Colotta V, Calabri FR, Lenzi O, Filacchioni G, Galli A, Costagli C, Deflorian F, Moro S (2005) 1-substituted pyrazolo[1,5-c]quinazolines as novel Gly/NMDA receptor antagonists: synthesis, biological evaluation, and molecular modeling study. Bioorganic Med Chem 13:5536–5549

    Article  CAS  Google Scholar 

  23. Kinney WA, Lee NE, Garrison DT, Podlesny Jr EJ, Simmonds JT, Bramlett D, Notvest RR, Kowal DM, Tasse RP (1992) Bioisosteric replacement of the alpha-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists. J Med Chem 35:4720–4726

    Article  CAS  PubMed  Google Scholar 

  24. Kanungo TM, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892

    Article  Google Scholar 

  25. Everitt BS, Dunn G (2013) Applied multivariate data analysis2nd edn. Wiley Online Library Arnold, London

    Google Scholar 

  26. Balaji S, Prasanna DS, Rangappa KS (2013) Docking, QSAR and CoMFA studies on arecoline analogues as muscarinic acetylcholine receptor (mAChR) M1 agonists. Proc Indian Natl Sci Acad 79:41–50

    CAS  Google Scholar 

  27. Lu X, Lv M, Huang K, Ding K, You Q (2012) Pharmacophore and molecular docking guided 3D-QSAR study of bacterial enoyl-ACP reductase (FabI) inhibitors. Int J Mol Sci 13:6620–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Srivastava V, Kumar A, Mishra BN, Siddiqi MI (2008) CoMFA and CoMSIA 3D-QSAR analysis of DMDP derivatives as anti-cancer agents. Bioinformation 2:384–391

    Article  PubMed  PubMed Central  Google Scholar 

  29. Halder AK, Saha A, Jha T (2013) Exploration of structural and physicochemical requirements and search of virtual hits for aminopeptidase N inhibitors. Mol Div 17:123–137

    Article  CAS  Google Scholar 

  30. Discovery studio 2.5 (2009) a) LigandFit, (b) Pharmacophore (c) Bayesian model; Accelrys Software Inc., San Diego

  31. Yang XL, Zhou Y, Liu XL (2014) Hologram quantative structure–activity relationship studies on 1-(5-carboxyindol-1-yl) propan-2-one inhibitors of human cytosolic phospholipase A2α. Med Chem Res 23:1512–1518

    Article  CAS  Google Scholar 

  32. Sybyl (2006) Tripos Inc.

  33. Jacquez JA, Jacquez GM (2002) Fisher’s randomization test and Darwin’s data—a footnote to the history of statistics. Math Biosci 180:23–28

    Article  PubMed  Google Scholar 

  34. Ramar V, Pappu S (2016) Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-kappaB-A molecular docking and dynamics approach. Comput Biol Chem 62:29–35

    Article  CAS  PubMed  Google Scholar 

  35. Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S (2011) Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inf Model 51:647–669

    Article  CAS  PubMed  Google Scholar 

  37. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  CAS  PubMed  Google Scholar 

  38. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  CAS  PubMed  Google Scholar 

  40. Maestro v9.7. a) Glide, (b) LigPrep; Protien prep wizard. Schrodinger

  41. Tyagi C, Gupta A, Goyal S, Dhanjal J, Grover A (2014) Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the alpha-beta interfacial site of human tubulin. BMC Genomics 15(Suppl 9):S3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pradeepkiran JA, Kumar KK, Kumar YN, Bhaskar M (2015) Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M. Drug Des Dev Ther 9:1897–1912

    Article  CAS  Google Scholar 

  43. Kallubai M, Amineni U, Mallavarapu M, Kadiyala V (2015) In silico approach to support that p-Nitrophenol monooxygenase from Arthrobacter sp. strain JS443 catalyzes the initial two sequential monooxygenations. Interdiscip Sci Comput Life Sci 7:157–167

    Article  CAS  Google Scholar 

  44. Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemom:1–18

Download references

Funding

Financial assistance for major research project (MRP) from University Grants Commission (UGC) is thankfully acknowledged. One of the authors, Tabassum Hossain wishes to thank UGC-MANF for awarding senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, T., Mukherjee, A. & Saha, A. Exploration of structural and physicochemical properties of small molecules to inhibit NMDA functionality. Struct Chem 29, 1175–1187 (2018). https://doi.org/10.1007/s11224-018-1103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1103-7

Keywords

Navigation