Skip to main content
Log in

On the relative stabilities of the alkali cations 222 cryptates in the gas phase and in water-methanol solution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The relative stabilities of the alkali [M ⊂ 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K ⊂ 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na ⊂ 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes.

Alkali cryptates [M ⊂ 222]+ (M = Na, K, Rb and Cs) relative stabilities in gas and methanol:water solution: solvent effects and molecular recognition

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lehn JM (1995) Supramolecular chemistry: Concepts and perspectives. VCH, New York

    Google Scholar 

  2. Dobler M (1981) Ionophores and their structures. Wiley, New York

    Google Scholar 

  3. Lehn JM (1993) Science 260:1762–1763

    Article  CAS  Google Scholar 

  4. Cram DJ (1988) Angew Chem - Int Ed Eng 27:1009–1020

    Article  Google Scholar 

  5. Lehn JM (1978) Pure Appl Chem 50:871–892

    CAS  Google Scholar 

  6. Cram DJ, Cram JM (1974) Science 183:803–809

    Article  CAS  Google Scholar 

  7. Kyba EP (1977) J Am Chem Soc 99:2564–2571

    Article  CAS  Google Scholar 

  8. Rauwolf C, Straßner T (1997) J Mol Mod 3:1–16

    Article  CAS  Google Scholar 

  9. Bell SEJ, McKervey MA, Fayne D, Kane P, Diamond D (1998) J Mol Mod 4:44–52

    Article  CAS  Google Scholar 

  10. Puchta R, Seitz V, Hommes NvE, Saalfrank RW (2000) J Mol Mod 6:126–132

    Article  CAS  Google Scholar 

  11. Dickert FL, Landgraf S, Sikorski R (2000) J Mol Mod 6:491–497

    Article  CAS  Google Scholar 

  12. Puchta R, Clark T, Bauer W (2006) J Mol Mod 12:739–747

    Article  CAS  Google Scholar 

  13. Pumera M, Rulíšek L (2006) J Mol Mod 12:799–803

    Article  CAS  Google Scholar 

  14. Stryer L (1988) Biochemistry, 3rd edn. W. H. Freeman and Company, New York, p 967

    Google Scholar 

  15. Marrone TJ, Merz Jr KM (1995) J Am Chem Soc 117:779–791

    Article  CAS  Google Scholar 

  16. Auffinger P, Wipff G (1991) J Am Chem Soc 113:5976–5988

    Article  CAS  Google Scholar 

  17. Boudon S, Wipff G (1991) J Chim Phys 88:2443–2449

    CAS  Google Scholar 

  18. Troxler L, Wipff G (1994) J Am Chem Soc 116:1468–1480

    Article  CAS  Google Scholar 

  19. Feller D (1997) J Phys Chem A 101:2723–2731

    Article  CAS  Google Scholar 

  20. More MB, Ray D, Armentrout PB (1999) J Am Chem Soc 121:417–423

    Article  CAS  Google Scholar 

  21. Glendening ED, Feller D, Thompson MA (1994) J Am Chem Soc 116:10657–10669

    Article  CAS  Google Scholar 

  22. Auffinger P, Wipff G (1991) J Chim Phys 88:2525–2534

    CAS  Google Scholar 

  23. Wipff G (1992) J Coord Chem 27:7–37 Part B

    Article  CAS  Google Scholar 

  24. Zhang XX, Izatt RM, Bradshaw JS, Krakowiak KE (1998) Coord Chem Rev 174:179–189

    Article  CAS  Google Scholar 

  25. Martell AE, Hancock RD, Motekaitis RJ (1994) Coord Chem Rev 133:39–65

    Article  CAS  Google Scholar 

  26. Solomons TWG (1992) Organic chemistry, 5th edn. Willey, New York, p 443

    Google Scholar 

  27. Galle M, Puchta R, Hommes NvE, van Eldik R (2006) Z Phys Chem 220:511–523

    CAS  Google Scholar 

  28. [K ⊂ 222]+: Moras D, Metz B, Weiss R (1973) Acta Cryst B 29:383–388; [Rb ⊂ 222]+ and [Cs ⊂ 222]+: Moras D, Metz B, Weiss R (1973) Acta Cryst B 29:388–395; [Na ⊂ 222]+: Moras D, Weiss R (1973) Acta Cryst B 29:396–399

    Google Scholar 

  29. Krakowiak KE, Zhang XX, Bradshaw JS, Zhu CY, Izatt RM (1995) J Incl Phenom 23:223–231

    Article  CAS  Google Scholar 

  30. Chen Q, Cannell K, Nicoll J, Deaden DV (1996) J Am Chem Soc 118:6335–6344

    Article  CAS  Google Scholar 

  31. McQuarrie DA (1976) Statistical Mechanics, 1st edn. HarperCollins Publishers, New York

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Peng CY, Ayala PY, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian 94 (Revision D.1) Gaussian Inc, Pittsburgh PA

  33. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  34. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  35. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  36. Kollman P (1993) Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  37. Allen MP, Tildesley DJ (1997) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  38. Barker JA, Watts RO (1973) Mol Phys 26:789–792

    Article  CAS  Google Scholar 

  39. Jorgensen WL (1998) OPLS force fields. In: Schleyer PvR (ed) The encyclopedia of computational chemistry, vol 3. Wiley, New York, p 1986

    Google Scholar 

  40. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361–373

    Article  CAS  Google Scholar 

  41. Huheey JE, Keiter EA, Keiter PL (1993) Inorganic chemistry: Principles and reactivity, 4th edn. Harper Collins, New York, p 114

    Google Scholar 

  42. Fuentealba P, Preuss H, Stoll H, Szentpály LV (1982) Chem Phys Lett 89:418–422

    Article  CAS  Google Scholar 

  43. Jorgensen WL, Blake JF, Buckner JK (1989) Chem Phys 129:193–200

    Article  CAS  Google Scholar 

  44. Freitas LCG (1991) Diadorim Program. Theoretical Chemistry Laboratory, Departamento de Química, UFSCar, São Carlos, SP, Brazil; Freitas LCG (1993) J Mol Struct: Theochem 101:151–158

  45. Kastenholz MA, Hünenberger PH (2006) J Chem Phys 124:224501-1-20

    Google Scholar 

  46. Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic-structure theory, 1st edn. Wiley, New York, chapter 15

    Google Scholar 

  47. Soong L-L, Leroi GE, Popov AI (1992) J Inclusion Phenom 12:253–262

    Article  CAS  Google Scholar 

  48. Marcus Y (1997) Ion properties, 1st edn. Marcel Dekker, New York, p 121

    Google Scholar 

  49. Kalidas C, Hefter G, Marcus Y (2000) Chem Rev 100:819–852

    Article  CAS  Google Scholar 

  50. Lehn JM, Sauvage JP (1975) J Am Chem Soc 97:6700–6707

    Article  CAS  Google Scholar 

  51. Born M (1920) Z Phys 1:45–48

    Article  CAS  Google Scholar 

  52. Bem-Naim A (1987) Solvation thermodynamics. Plenum Press, New York

    Google Scholar 

  53. Freitas LCG, Botelho LF (1994) Quim Nova 17:489–495

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FAPESP, CAPES, CNPq, PADCT and CENAPAD-SP. ESL thanks FAPESP for the award of a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Longo.

Electronic Supplementary Material

The Supplementary Material contains the Cartesian coordinates of the optimized structures as well as their corresponding pictures with the atom labels.

Figure S1

Structure of the [Na ⊂ 222]+ endo cryptate optimized with the HF/6-31+G* and HF/6-311++G** methods, together with the corresponding atom-labeling scheme (see coordinates in Table S2 and Table S8). (DOC 101 kb)

Figure S2

Structure of the [K ⊂ 222]+ endo cryptate optimized with the HF/6-31+G* method, together with the corresponding atom-labeling scheme (see coordinates in Table S3). (DOC 99.5 kb)

Figure S3

Structure of the [K ⊂ 222]+ endo cryptate optimized with the HF/6-31+G*/ LanL2DZ method, together with the corresponding atom-labeling scheme (see coordinates in Table S4). (DOC 92.5 kb)

Figure S4

Structure of the [Rb ⊂ 222]+ endo cryptate optimized with the HF/6-31+G*/LanL2DZ method, together with the corresponding atom-labeling scheme (see coordinates in Table S5). (DOC 94 KB)

Figure S5

Structure of the [Cs ⊂ 222]+ endo cryptate optimized with the HF/6-31+G*/LanL2DZ method, together with the corresponding atom-labeling scheme (see coordinates in Table S6). (DOC 95.5 kb)

Figure S6

Structure of the [Cs ⊂ 222]+ exo cryptate optimized with the HF/6-31+G*/LanL2DZ method, together with the corresponding atom-labeling scheme (see coordinates in Table S7). (DOC 93 kb)

Table S1

Partial atomic charges (in |e|) used in the explicit-solvent MC simulations of the [M ⊂ 222]+ cryptates. The charges were derived from a CHELPG analysis based on the optimized structures (at the same level of theory as the optimization for [Na ⊂ 222]+ and [K ⊂ 222]+, or at the HF/6-31G level with an SDD pseudopotential [27] for the Rb and Cs atoms in [Rb ⊂ 222]+ and [Cs ⊂ 222]+). See Figures S1, S2, S3 and S4 for the atom-labeling scheme. (DOC 42.5 kb)

Table S2

Cartesian coordinates of the [Na ⊂ 222]+ endo cryptate optimized with the HF/6-31+G* method (energy -1422.3664973 E h; MP2 energy -1426.152491 E h). See Fig. S1 for the structure and atom-labeling scheme. (DOC 42.5 kb)

Table S3

Cartesian coordinates of the [K ⊂ 222]+ endo cryptate optimized with the HF/6-31+G* method (energy -1859.6493126 E h; MP2 energy -1863.4713692 E h). See Fig. S2 for the structure and atom-labeling scheme. (DOC 42 kb)

Table S4

Cartesian coordinates of the [K ⊂ 222]+ endo cryptate optimized with the HF/6-31+G*/LanL2DZ method (energy -1288.3847267 E h; MP2 energy -1292.2569353 E h). See Fig. S3 for the structure atom labeling scheme. (DOC 42 kb)

Table S5

Cartesian coordinates of the [Rb ⊂ 222]+ endo cryptate optimized with the HF/6-31+G*/LanL2DZ method (energy -1284.0926095 E h; MP2 energy -1287.9527188 E h). See Fig. S4 for the structure and atom-labeling scheme. (DOC 42 kb)

Table S6

Cartesian coordinates of the [Cs ⊂ 222]+ endo cryptate (based on the crystallographic structure) optimized with the HF/6-31+G*/LanL2DZ method (energy -1280.1065032 E h; MP2 energy -1283.9468867 E h). See Fig. S5 for the structure and atom-labeling scheme. (DOC 41.5 kb)

Table S7

Cartesian coordinates of the [Cs ⊂ 222]+ exo cryptate optimized with the HF/6-31+G*/LanL2DZ method (energy -1280.0946488 E h; MP2 energy -1283.9294974 E h). See Fig. S6 for the structure and atom-labeling scheme. (DOC 41.5 kb)

Table S8

Cartesian coordinates of the [Na ⊂ 222]+ endo cryptate optimized with the HF/6-311++G** method (energy -1422.6813206 E h). See Fig. S1 for the structure and atom-labeling scheme. (DOC 43.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leite, E.S., Santana, S.R., Hünenberger, P.H. et al. On the relative stabilities of the alkali cations 222 cryptates in the gas phase and in water-methanol solution. J Mol Model 13, 1017–1025 (2007). https://doi.org/10.1007/s00894-007-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0213-8

Keywords

Navigation