Skip to main content
Log in

The formation of endo-complexes between calixarenes and amines—a reinvestigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The formation of an endo-complex between p-allylcalix[4]arene and t-butylamine was described by Gutsche in 1985. However, for a comparable system, it has been shown using NOE methods that the amine does not reside inside the calix. Instead, an exo-calix complex is formed. A reevaluation suggests that the previous conclusion is an artifact due to improper NMR-data processing. DFT (RB3LYP/6–31G(d)) calculations confirm the higher stability of the exo-complex over its endo-counterpart.

Calixarenes undergo proton transfer to amines. However, contrary to literature data,no endo-calix complex is formed. This is shown by NMR NOE methods as well asby calculations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (a) v Baeyer A (1872) Ber Dtsch Chem Ges 5:25–26; (b) v Baeyer A (1872) Ber Dtsch Chem Ges 5:280–282; (c) v Baeyer A (1872) Ber Dtsch Chem Ges 5:1094

    Google Scholar 

  2. (a) Zinke A, Ziegler E (1944) Wiener Chem Ztg 47:151–161; (b) Zinke A, Ziegler E (1944) Ber Dtsch Chem Ges 77:264–272

    Google Scholar 

  3. (a) Gutsche CD, Muthukrishnan RJ (1978) Org Chem 43:4905–4906; (b) Gutsche CD, Iqbal M (1990) Org Synth 68:234–237; (c) Gutsche CD, Dhawan B, Leonis M, Stewart D (1990) Org Synth 68:238–242; (d) Munch JH, Gutsche CD (1990) Org Synth 68:243–246

    Article  CAS  Google Scholar 

  4. Hayes BT, Hunter RF (1958) J Appl Chem 8:743–748

    Article  CAS  Google Scholar 

  5. (a) Kämmerer H, Happel G, Caesar F (1972) Makromol Chem 162:179–197; (b) Happel G, Mathiasch B, Kämmerer H (1975) Makromol Chem 176:3317–3334; (c) Kämmerer H, Happel G (1978) Makromol Chem 179:1199–1207; (d) Kämmerer H, Happel G(1980) Makromol Chem 181:2049–2062; (e) Kämmerer H, Happel G, Mathiasch B, (1981) Makromol Chem 182:1685–1694

    Article  Google Scholar 

  6. (a) Böhmer V, Chim P, Kämmerer H (1979) Makromol Chem 180:2503–2506; (b) Böhmer V, Marschollek F, Zetta L (1987) J Org Chem 52:3200–3205; (c) Böhmer V, Merkel L, Kunz U (1987) J Chem Soc, Chem Commun 896–897; (d) Böhmer V (1995) Angew Chem 107:785–818; (e) Böhmer V (1995) Angew Chem, Int Ed Engl 34:713–745

    Article  Google Scholar 

  7. (a) Shinkai S, Ikeda A (1999) Pure Appl Chem 71:275–280; (b) Lhotak P, Nakamura R, Shinkai S (1997) Supramolecular Chem 8:333–334; (c) Tsudera T, Ikeda A, Shinkai S (1997) Tetrahedron 53:13609–13620; (d) Lhotak P, Shinkai SJ (1997) Phys Org Chem 10:273–285; (e) Ikeda A, Shinkai S (1997) Chem Rev 97:1713–1734; (f) Araki K, Akao K, Ikeda A, Suzuki T, Shinkai S (1996) Tetrahedron Lett 37:73–76; (g) Harada T, Shinkai SJ (1995) Chem Soc, Perkin Trans 2 2231–2242; (h) Harada T, Ohseto F, Shinkai S (1994) Tetrahedron 50:13377–13394; (i) Iwamoto K, Ikeda A, Araki K, Harada T, Shinkai S (1993) Tetrahedron 49:9937–2115; (j) Harada T, Rudzinski JM, Shinkai SJ (1992) Chem Soc Perkin Trans 2a 2109–2115

    Article  CAS  Google Scholar 

  8. Gutsche CD (1983) Acc Chem Res 16:161–170; (b) Gutsche CD (1984) Topics in Current Chemistry 183:161–170; (c) Gutsche CD, Bauer LJ (1985) J Am Chem Soc 107: 6052–6059; (d) Gutsche CD, Bauer LJ (1985) J Am Chem Soc 107:6063–6069; (e) Gutsche CD, Iqbal M, Alam I (1987) J Am Chem Soc 109:4314–4320; and literature cited there

    Article  CAS  Google Scholar 

  9. (a) Schatz J (2004) Collect Czech Chem Commun 69:1169–1194; (b) Mendes A, Bonal C, Morel-Desrosiers N, Morel JP, Malfreyt P (2002) J Phys Chem B 106:4516–4524; (c) Baaden M, Burgard M, Boehme C, Wipff G (2001) Phys Chem Chem Phys, 3:1317–1325; (d) Ogden MI, Rohl AL, Gale JD (2001) Chem Comm 1626–1627; (e) Baaden M, Wipff G, Yaftian MR, Burgard M, Matt D (2000) J Chem Soc, Perkin Trans 2 1315–1321; (f) Arnaud-Neu F, Barboso S, Berny F, Casnati A, Muzet N, Pinalli A, Ungaro R, Schwing-Weil MJ, Wipff G (1999) J Chem Soc, Perkin Trans 2 1727–1738; (g) Bernardino RJ, Cost Cabral BJ (1999) J Phys Chem A 103:9080–9085; (h) Bell SEJ, McKervey MA, Fayne D, Kane P, Diamond DJ (1984) Mol Model 4:44–52; (i) Bell SEJ, Browne JK, McKee V, McKervey MA, Malone JF, O´Leary M, Walker A, Arnaud-Neu F, Boulangeot O, Mauprivez O, Schwing-Weill MJ (1998) J Org Chem 63:489–501; and literature cited there

    Article  CAS  Google Scholar 

  10. see e.g.; Baur M, Frank M, Schatz J, Schildbach F (2001) Tetrahedron 57:6985–6991; and literature cited there

    Article  CAS  Google Scholar 

  11. see e.g.; Schatz J, Backes ACh, Siehl H-U (2000) J Chem Soc Perkin Trans 2:609–610; and literature cited there

    Google Scholar 

  12. see e.g.; Bonai C, Israeli Y, Morel JP, Morel-Desrosiers N (2001) J Chem Soc Perkin Trans 2:1075–1078; and literature cited there

    Google Scholar 

  13. see e.g.; (a) Darbost U, Rager M-N, Petit S, Jabin I, Reinaud O (2005) J Am Chem Soc 127:8517–8525; (b) Tsue H, Ishibashi K, Takahashi H, Tamura R (2005) Org Lett 8:2165–2168; and literature cited there

    Article  PubMed  CAS  Google Scholar 

  14. (a) Hunter ChA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534; (b) Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790–18794; (c) Castro R, Berardi MJ, Córdova E, Ochoa de Olza M, Kaifer AE, Evanseck JD (1996) J Am Chem Soc 118:10257–10268; (d) Chipot Ch, Jaffe R, Maigret B, Pearlman DA, Kollman PA (1996) J Am Chem Soc 118:11217–11224; (e) Sinnokrot MO, Sherill CD (2004) J Am Chem Soc 126:7690–7697;and literature cited there

    Article  Google Scholar 

  15. see e.g.; (a) Cametti M, Nissinen M, Cort AD, Mandolini L, Rissanen K (2005) J Am Chem Soc 127:3831–3837; (b) Garau C, Quinonero D, Frontera A, Ballester P, Costa A, Deyà PM (2003) Org Lett 5:2227–2229; and literature cited there

    Article  PubMed  CAS  Google Scholar 

  16. see e.g.; (a) Lehn J-M, Sauvage J-P (1975) J Am Chem Soc 97:6700–6707; (b) Lehn J-M (1978) Acc Chem Res 11:49–57

    Article  CAS  Google Scholar 

  17. Dietrich B, Viout P, Lehn J-M (1993) Macrocyclic Chemistry. VCH, Weinheim

    Google Scholar 

  18. see e.g.; (a) Pedersen CJ (1988) Angew Chem 100:1053–1059; (b) Pedersen CJ (1988) Angew Chem, Int Ed Engl 27:1021– 1027; (c) Cram DJ (1988) Angew Chem 100:1041–1052; (d) Cram DJ (1988) Angew Chem, Int Ed Engl 27:1009–1020; (e) Lehn J-M (1988) Angew Chem 100:91–116; (f) Lehn J-M (1988) Angew Chem Int Ed Engl 27:89–112; and literature cited there; (g) Ellermann J, Bauer W, Schütz M, Heinemann FW, Moll M (1998) Monatshefte für Chemie Chemical Monthly 129:547–566; (h) Hausner SH, Striley CAF, Krause-Bauer JA, Zimmer H (2005) J Org Chem 70:5804–5817

    Article  CAS  Google Scholar 

  19. see e.g.; (a) Saalfrank RW, Dresel A, Seitz V, Trummer S, Hampel F, Teichert M, Stalke D, Stadler C, Daub J, Schünemann V, Trautwein AX (1997) Chem Eur J 3:2058–2061; (b) Saalfrank RW, Löw N, Kareth S, Seitz V, Hampel F, Stalke D, Teichert M (1998) Angew Chem 110:182–184; (c) Saalfrank RW, Löw N, Kareth S, Seitz V, Hampel F, Stalke D, Teichert M (1998) Angew Chem Int Ed Engl 37:172–174; (d) Saalfrank RW, Seitz V, Caulder DL, Raymond KN, Teichert M, Stalke D (1998) Eur J Inorg Chem 1313–1317; (e) Puchta R, Seitz V, van Eikema Hommes NJR, Saalfrank RW (2000) J Mol Model 6:126–132; (f) Saalfrank RW, Seitz V, Heinemann FW, Göbel C, Herbst-Irmer R (2001) J Chem Soc, Dalton Trans 599–603; (g) Saalfrank RW, Bernt I, Uller E, Hampel F (1997) Angew Chem 109:2596–2599; (h) Saalfrank RW, Bernt I, Uller E, Hampel F (1997) Angew Chem Int Ed Engl 36:2482–2485; (i) Waldmann O, Schülein J, Koch R, Müller P, Bernt I, Saalfrank RW, Andres H-P, Güdel HU (1999) Inorg Chem 38:5879–5886; (j) Saalfrank RW, Deutscher Ch, Maid H, Ako AM, Sperner St, Nakajima T, Bauer W, Hampel F, Heß BA, van Eikema Hommes NJR, Puchta R, Heinemann FW (2004) Chem Eur J 10:1899–1905; (k) Saalfrank RW, Nakajima T, Mooren N, Scheurer A, Maid H, Hampel F, Trieflinger Ch, Daub J (2005) Eur J Inorg Chem 8:1149–1153; and literature cited there

    Article  CAS  Google Scholar 

  20. Dietrich B, Kintzinger JP, Lehn J-M, Metz B, Zahidi A (1987) J Phys Chem 91:6600–6606

    Article  CAS  Google Scholar 

  21. see e.g.; (a) Radius U (2004) Z Anorg Allg Chemie 630:957–972; (b) Zeller J, Büschel S, Reiser BKH, Begum F, Radius U (2005) Eur J Inorg Chem 2037–2043; (c) Steyer S, Jeunesse C, Harrowfield J, Matt D (2005) Dalton Trans 1301–1309; (d) Frank M, Maas G, Schatz J (2004) Eur J Inorg Chem 607–613; (e) Ishii Y, Onaka K, Hirakawa H, Shiramizu K (2002) Chem Commun 1150–1151; (f) Seitz J, Maas G (2002) Chem Commun 338–339; (g) Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt DN, Salvio R, Sartori A, Ungaro R (2005) J Org Chem 70:5398–5402; and literature cited there

    Article  CAS  Google Scholar 

  22. (a) Chen Q-Y, Chen C-F (2005) Eur J Inorg Chem 2468–2472; (b) Zeng X, Sun H, Chen L, Leng X, Xu F, Li Q, He X, Zhang W, Zhang Z-Z (2003) Org Biomol Chem 1:1073–1079; (c) Cha NR, Kim MY, Kim YH, Choe J-I, Chang S-K (2002) J Chem Soc, Perkin Trans 1193–1196; (d) Zeng, X, Leng X, Chen L, Sun H, Xu F, Li Q, He X, Zhang Z-Z, Zhang Z-Z (2002) J Chem Soc, Perkin Trans 796–801; (e) Zeng X, Weng L, Chen L, Leng X, Ju H, He X, Zhang Z-Z (2001) J Chem Soc, Perkin Trans 545–549; and literature cited there

  23. Casnati A, Della Ca1 N, Fontanella M, Sansone F, Ugozzoli F, Ungaro R, Liger K, Dozol J-F (2005) Eur J Inorg Chem 2338–2348 and literature cited there

  24. (a) Talanova GG, Talanov VS, Gorbunova MG, Hwang H-S, Bartsch RA (2002) Chem Soc Perkin Trans 2:2070–2077; (b) Liu Y, Zhao B-T, Zhang H-Y, Wada T, Inoue Y (2001) J Chem Soc Perkin Trans 2:1219–1223; (c) Li J-S, Chen Y-Y, Lu X-R (2000) Eur J Org Chem 485–490; (d) Buschmann H-J, Wenz G, Cleve E, Schollmeyer E (2000) Acta Chim Slov 47:55–61; (e) Arnaud-Neu F, Browne JK, Byrne D, Marrs DJ, McKervey MA, O'Hagan P, Schwing-Weill MJ, Walker A (1999) Chem Eur J 5:175–186; (f) Sachleben RA, Urvoas A, Bryan JC, Haverlock TJ, Hay BP, Moyer BA (1999) Chem Comm 1751–1752; (g) Kakoi T, Toh T, Kubota F, Goto M, Shinkai S, Nakashio F (1984) Analytical Science 14:501–506; (h) Sonoda M, Hayashi K, Nishida M, Ishii D, Yoshida I (1998) Analytical Science 14:493–499; and literature cited there

    Google Scholar 

  25. (a) Guo Q-L, Zhu W-X, Liu Y-C, Yuan D-Q, Zhang J, Ma S-L (2004) Polyhedron 23:2055–2061; (b) Rudkevich DM (2004) Angew Chem 116:568–581; (c) Rudkevich DM (2004) Angew Chem Int Ed 43:558–571; (d) Rebeck Jr J (2000) Chem Comm 637–643; (e) Brody MS, Schalley CA, Rudkevich DM, Rebek Jr J (1999) Angew Chem 111:1738–1741; (f) Brody MS, Schalley CA, Rudkevich DM, Rebek Jr J (1999) Angew Chem Int Ed 38:1640–1644; (g) Drljaca A, Hardie MJ, Raston CL, Spiccia L (1999) Chem Eur J 5:2295–2299; and literature cited there

    Article  CAS  Google Scholar 

  26. (a) Szemes F, Drew MGB, Beer PD (2002) Chem Comm 1228–1229; (b) Roy R, Kim JM (1999) Angew Chem 111:380–384; (c) Roy R, Kim JM (1999) Angew Chem Int Ed 38:369–372; and literature cited there

  27. (a) Aime S, Barge A, Botta M, Casnati A, Fragai M, Luchinat C, Ungaro R (2001) Angew Chem 113:4873–4875; (b) Aime S, Barge A, Botta M, Casnati A, Fragai M, Luchinat C, Ungaro R (2001) Angew Chem Int Ed Engl 40:4737–4739; and literature cited there

    Article  Google Scholar 

  28. Lippmann T, Mann G (1995) Git Fachz Lab 203–207

  29. Soi A, Hirsch A (1998) New J Chem 22:1337–1338

    Article  CAS  Google Scholar 

  30. (a) Stott K, Stonehouse J, Keeler J, Hwang T-L, Shaka AJ (1995) J Am Chem Soc 117:4199–4200; (b) Stott K, Keeler J, Van QN, Shaka AJ (2000) J Magn Reson 125:302–307

    Article  CAS  Google Scholar 

  31. (a) Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627; (b) Becke AD (1993) J Chem Phys 97:5648–5652; (c) Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789; (d) Hehre WJ, Ditchfeld R, Pople JA (1972) J Chem Phys 56:2257–2261; (e) Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA,Gordon MS (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts, R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford CT

    Google Scholar 

  33. see e.g.; (a) Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim; (b) Dosche C, Kumke MU, Ariese F, Bader AN, Gooijer C, Dosa PI, Han S, Miljanic OS, Vollhardt KPC, Puchta R, van Eikema Hommes NJR (2003) Phys Chem Chem Phys 5:4563–4569; (c) Dosche C, Kumke MU, Löhmannsröben H-G, Ariese F, Bader AN, Gooijer C, Miljanic OS, Iwamoto M, Vollhardt KPC, Puchta R, van Eikema Hommes NJR (2004) Phys Chem Chem Phys 6:5476–5483; and literature cited there

    Google Scholar 

  34. Backes ACh, Schatz J, Siehl H-U (2002) J Chem Soc Perkin Trans 2:484–488

    Google Scholar 

  35. van Eikema Hommes NJR, Timothy Clark T (2005) J Mol Model 11:175–185

    Article  CAS  Google Scholar 

  36. (a) von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318; (b) von Ragué Schleyer P, Jiao H, van Eikema Hommes NJR, Malkin VG, Malkina OLJ (1997) J Am Chem Soc 119;12669–12670; (c) von Ragué Schleyer P, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465–2468; (d) Chen Z, Wannere C S, Corminboeuf C, Puchta R, von Ragué Schleyer P (2005) Chem Rev 105:3842–3888

    Article  Google Scholar 

  37. Soi A, Bauer W, Mauser H, Moll C, Hampel F, Hirsch A (1998) J Chem Soc Perkin Trans 2:1471–1478

    Google Scholar 

  38. Nachtigall FF, Lazzarotto M, Nome FJ (2002) Brazil Chem Soc 13:295–299; Available on the web: http://www.scielo.br/pdf/jbchs/v13n3/9591.pdf

    CAS  Google Scholar 

  39. Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon, Oxford, UK

    Google Scholar 

  40. Illner P, Zahl A, Puchta R, van Eikema Hommes NJR, Wasserscheidt P, van Eldik R (2005) J Orgmet Chem 690:3567–3576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Frank Beierlein and Dr. Nico J. R. van Eikema Hommes for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bauer.

Additional information

Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puchta, R., Clark, T. & Bauer, W. The formation of endo-complexes between calixarenes and amines—a reinvestigation. J Mol Model 12, 739–747 (2006). https://doi.org/10.1007/s00894-005-0079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0079-6

Keywords

Navigation