Skip to main content
Log in

New 2-methylenepropylene-bridged cryptands with high sodium ion selectivity: A thermodynamic study of complexation

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic quantities for the interactions of mono- and tri(2-methylenepropylene)-bridged cryptands, cryptand [3.3.1], cryptand [2.2.2], and 18-crown-6-with Na+, K+, Rb+, and Cs+ have been determined by calorimetric titration in an 80:20 (v/v) methanol: water solution at 25°C. Incorporation of the 2-methylenepropylene (−CH2C(=CH2)CH2−) bridge(s) into cryptand [2.2.2] results in a large change in the ligand-cation binding properties. Tri(2-methylenepropylene)-bridged cryptand [2.2.2] (2) shows high selectivity factors for Na+ over K+ and other alkali cations, while 2-methylenepropylene-bridged cryptand [2.2.2.] (1) selects K+ over Na+, as does cryptand [2.2.2]. The K+/Na+ selectivity is reversed with increasing number of 2-methylenepropylene bridges. This observation indicates that increasing the number of 2-methylenepropylene bridges on cryptand [2.2.2] favors complexation of a small cation over a large one. The logK values for the formation of 1 and 2 complexes (except 1-Cs+ and 2-Na+) decrease as compared with those for the corresponding [2.2.2] complexes. Formation of six-membered chelate ring(s) by the propyleneoxy unit(s) of 1 and 2 with a cation stabilizes the cryptate complexes of the small Na+ and destabilizes the complexes of large alkali metal cations. Thermodynamic data indicate that the stabilities of the cryptate complexes studied are dominated mostly by the enthalpy change. In most cases, both stabilization of Na+ complexes and destabilization of the complexes of large alkali metal cations by six-membered chelate ring(s) also result from an enthalpic effect. Cryptand [3.3.1] shows a selectivity for K+ over Cs+, despite its two long CH2(CH2OCH2)3CH2 bridges. The [3.1] macroring portion of [3.3.1]may be too small to effectively bind the Cs+, resulting in the low stability of the Cs+ complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Krakowiak, J.S. Bradshaw, C.Y. Zhu, J.K. Hathaway, N.K. Dalley, and R.M. Izatt:J. Org. Chem. 59, 4082 (1994).

    Google Scholar 

  2. R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R. L. Bruening:Chem. Rev. 91, 1721 (1991).

    Google Scholar 

  3. D.J. Cram:From Design to Discovery, Am. Chem. Soc., Washington, DC (1990).

    Google Scholar 

  4. J.-M. Lehn:Pure Appl. Chem. 50, 871 (1978).

    Google Scholar 

  5. B. Dietrich:Inclusion Compounds, J.L. Atwood, J.E.D. Davies, and D.D. MacNicol, Eds., Academic Press: London, Vol. 2, p. 337 (1984).

    Google Scholar 

  6. D.R. Alston, A.M.Z. Slawin, J.F. Stoddart, D.J. Williams, and R. Zarzycki:Angew. Chem. Int. Ed. Engl. 26, 692 (1987).

    Google Scholar 

  7. K. Naemura, Y. Kanda, H. Iwasaka, and H. Chikamatsu:Bull. Chem. Soc. Jpn. 60, 1789 (1987).

    Google Scholar 

  8. N.G. Lukyanenko, S.S. Basok, and L. K. Filonova:J. Chem. Soc., Perkin Trans. 1 3141 (1988).

    Google Scholar 

  9. M. Micheloni:J. Coord. Chem. 18, 3 (1988).

    Google Scholar 

  10. A. Czech, B.P. Czech, R.A. Bartsch, C.A. Chang, and V.O. Ochaya:J. Org. Chem. 53, 5 (1988).

    Google Scholar 

  11. B. Alpha, E. Anklam, R. Deschenaux, J.-M., Lehn, and M. Pietraszkiewicz:Helv. Chim. Acta 71, 1042 (1988).

    Google Scholar 

  12. K.E. Krakowiak, J.S. Bradshaw, and R.M. Izatt:J. Heterocyclic Chem. 27, 1011 (1990).

    Google Scholar 

  13. K.E. Krakowiak, J.S. Bradshaw, X. Kou, and N.K. Dalley:Tetrahedron 51, 1599 (1995).

    Google Scholar 

  14. K.E. Krakowiak and J.S. Bradshaw:J. Org. Chem. 56, 3723 (1991).

    Google Scholar 

  15. N.G. Lukyanenko, N.Y. Nazarova, V.I. Vetrogon, N.I. Vetrogon, and A.S. Reder:Polyhedron 9, 1369 (1990).

    Google Scholar 

  16. K.E. Krakowiak, J.S. Bradshaw, N.K. Dalley, C.Y. Zhu, G.L. Yi, J.C. Curtis, D. Li, and R.M. Izatt:J. Org. Chem. 57, 3166 (1992).

    Google Scholar 

  17. J.S. Bradshaw, H.Y. An, K.E. Krakowiak, T.M. Wang, C.Y. Zhu, and R.M. Izatt:J. Org. Chem. 57, 6112 (1992).

    Google Scholar 

  18. B. Dietrich, J.M. Lehn, and J.P. Sauvage:Tetrahedron Lett. 34, 2885, 2889 (1969).

    Google Scholar 

  19. D.G. Parsons:J. Chem. Soc., Perkin Trans. I 451 (1978).

    Google Scholar 

  20. A.C. Coxon, and J.F. Stoddart:J. Chem. Soc. Perkin Trans. I 767 (1977).

    Google Scholar 

  21. D.J. Cram and S.P. Ho:J. Am. Chem. Soc. 108, 2998 (1986).

    Google Scholar 

  22. D.J. Cram, T. Kaneda, R.C. Helgeson, and G.M. Lein:J. Am. Chem. Soc. 101, 6752 (1979).

    Google Scholar 

  23. D.J. Cram and G.M. Lein:J. Am. Chem. Soc. 107, 3657 (1985).

    Google Scholar 

  24. M. Ouchi, Y. Inoue, H. Sakamoto, A. Yamahira, M. Yoshinaga, and T. Hakushi:J. Org. Chem. 48, 3168 (1983).

    Google Scholar 

  25. M. Ouchi, Y. Inoue, T. Kanzaki, and T. Hakushi:J. Org. Chem. 49, 1408 (1984).

    Google Scholar 

  26. K. Kimura, M. Tanaka, S.-I. Iketani, and T. Shono:J. Org. Chem. 52, 836 (1987).

    Google Scholar 

  27. Y. Inoue, T. Hakushi, Y. Liu, and L.-H. Tong:J Org. Chem. 58, 5411 (1993)

    Google Scholar 

  28. D.J. Eatough, J.J. Christensen, and R.M. Izatt:Thermochim. Acta 3, 219 (1972).

    Google Scholar 

  29. J.D. Lamb, R.M. Izatt, C.S. Swain, and J.J. Christensen:J. Am. Chem. Soc. 102, 475 (1980).

    Google Scholar 

  30. H.-J. Buschmann:Thermochim. Acta 102, 179 (1986).

    Google Scholar 

  31. R.D. Hancock and A.E. Martell:Chem. Rev. 89, 1875 (1989).

    Google Scholar 

  32. R.D. Hancock:Pure Appl. Chem. 58, 1445 (1986).

    Google Scholar 

  33. J.A. Bandy, D.G. Parsons, and M.R. Truter:J. Chem. Soc., Chem. Commun. 727 (1981).

  34. Y. Inoue, T. Hakushi, and Y. Liu, in:Cation Binding by Macrocycles, Y. Inoue and G.W. Gokel, Eds., Marcel Dekker: New York, Ch. 1 (1990).

    Google Scholar 

  35. J.M. Lehn and J.P. Sauvage:J. Am. Chem. Soc. 97, 6700 (1975).

    Google Scholar 

  36. D. Parker:Adv. Inorg. Chem. Radiochem. 27, 1 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krakowiak, K.E., Zhang, X.X., Bradshaw, J.S. et al. New 2-methylenepropylene-bridged cryptands with high sodium ion selectivity: A thermodynamic study of complexation. J Incl Phenom Macrocycl Chem 23, 223–231 (1995). https://doi.org/10.1007/BF00709580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709580

Key words

Navigation