Skip to main content
Log in

Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5‒07

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Petroleum pollution is a major concern in Antarctica due to the persistent nature of its hydrocarbon components coupled with the region’s extreme environmental conditions, which means that bioremediation approaches are largely inapplicable at present. The current study assessed the ability of the psychrotolerant phenol-degrader, Rhodococcus sp. strain AQ5-07, to assimilate diesel fuel as the sole carbon source. Factors expected to influence the efficiency of diesel degradation, including the initial hydrocarbon concentration, nitrogen source concentration and type, temperature, pH and salinity were studied. Strain AQ5-07 displayed optimal cell growth and biodegradation activity at 1% v/v initial diesel concentration, 1 g/L NH4Cl concentration, pH 7 and 1% NaCl during one-factor-at-a-time (OFAT) analyses. Strain AQ5-07 was psychrotolerant based on its optimum growth temperature being near 20 °C. In conventionally optimised media, strain AQ5-07 showed total petroleum hydrocarbons (TPH) mineralisation of 75.83%. However, the optimised condition for TPH mineralisation predicted through statistical response surface methodology (RSM) enhanced the reduction to 90.39% within a 2 days incubation. Our preliminary data support strain AQ5-07 being a potential candidate for real-field soil bioremediation by specifically adopting sludge-phase bioreactor system in chronically cold environments such as Antarctica. The study also confirmed the utility of RSM in medium optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R, Ramadass K (2016) Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Progr. https://doi.org/10.1002/btpr.2249

    Article  Google Scholar 

  • Acuna AJ, Pucci OH, Pucci GN (2012) Effect of nitrogen deficiency in the biodegradation of aliphatic and aromatic hydrocarbons in Patagonian contaminated soil. Int J Res Rev Appl Sci 11:470–476

    Google Scholar 

  • Ahmad SA, Shukor MY, Shamaan NA, MacCormack WP, Syed MA (2013) Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res Int. https://doi.org/10.1155/2013/871941

    Article  PubMed  PubMed Central  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soil: effect and management. Environ Sci Technol 38:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnurer Y, Oberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22:1238–1243

    Article  CAS  PubMed  Google Scholar 

  • Arif NM, Ahmad SA, Syed MA, Shukor MY (2012) Isolation and characterisation of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol 53:9–19

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auffret M, Labbe D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Beyer J, Jonsson G, Porte C, Krahn MM, Ariese F (2010) Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30:224–244

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Kumari R (2013) Bioremediation: a sustainable tool for environmental management—a review. Annu Rev Res Biol 3:974–993

    CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc 13:1–45

    Google Scholar 

  • Brito EMS, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterisation of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  CAS  PubMed  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilisation of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell IB, Claridge GGC, Campbell DI, Balks MR (1998) The soil environment. In: Priscu JC (ed) Ecosystem processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72. American Geophysical Union, Washington, pp 97–322

    Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd edn. Elsevier, San Diego, pp 179–188

    Chapter  Google Scholar 

  • Convey P, Coulson SJ, Worland MR, Sjöblom A (2018) The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol 41:1587–1605

    Article  Google Scholar 

  • Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2009) Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 21:329–339

    Article  Google Scholar 

  • de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:123–136

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  PubMed  Google Scholar 

  • de Jesus HE, Peixoto RS, Rosado AS (2015) Bioremediation in Antarctic soils. J Pet Environ Biotechnol 6:248. https://doi.org/10.4172/2157-7463.1000248

    Article  CAS  Google Scholar 

  • Foong CP, Vui Ling CMW, González M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263–273

    Article  Google Scholar 

  • Frantzen M, Falk-Patersen I-B, Nahrgang J, Smith TJ, Olsen TH, Hangstad TA, Camus L (2012) Toxicity of crude oil and pyrene to the embryos of beach spawning capelin (Mallotus villosus). Aquat Toxicol 108:42–52

    Article  CAS  PubMed  Google Scholar 

  • García-Borboroglu P, Boersma PD, Reyes L, Skewgar E (2008) Petroleum pollution and penguins: marine conservation tools to reduce the problem. In: Hofer TN (ed) Marine pollution: new research. Nova Science Publishers Inc., New York, pp 339–356

    Google Scholar 

  • Habib S, Ahmad SA, Wan Johari WL, Shukor MY, Alias SA, Khalil KA, Yasid NA (2018) Evaluation of conventional and response surface level optimisation of n-dodecane (n-C12) mineralisation by psychrotolerant strains isolated from pristine soil at Southern Victoria Island, Antarctica. Microb Cell Fact 17:44. https://doi.org/10.1186/s12934-018-0889-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SA, Jabeen S (2015) Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol Biotechnol Equip 29:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim S, Shukor MY, Khalil KA, Halmi MIE, Syed MA, Ahmad SA (2015) Application of response surface methodology for optimising caffeine-degrading parameters by Leifsonia sp. strain SIU. J Environ Biol 36:1215–1221

    CAS  PubMed  Google Scholar 

  • Ismail W, Gescher J (2012) The epoxy coenzyme—a thioesters pathways for degradation of aromatic compounds. Appl Environ Microbiol 78:5043–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli D, Chauhan U (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environ Toxicol 5:1–26

    Article  CAS  Google Scholar 

  • Karamba KI, Ahmad SA, Zulkharnain A, Syed MA, Khalil KA, Shamaan NA, Dahalan FA, Shukor MY (2016) Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rend Lincei 27:533. https://doi.org/10.1007/s12210-016-0516-8

    Article  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Lachacz A, Kalisz B, Gielwanowska I, Olech M, Chwedorzewska KJ, Kellman-Sopyla W (2018) Nutrient abundance and variability from soils in the coast of King George Island. J Plant Nutr Soil Sci 18:294–311

    CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Kim MK, Singleton I, Goodfellow M, Lee S-T (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol 100:325–333

    Article  CAS  PubMed  Google Scholar 

  • Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Wan Johari WL, Alias SA, Gonzalez-Rocha G, Shukor MY (2018) Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol 41:553–562

    Article  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  PubMed  Google Scholar 

  • Liu C-W, Liu H-S (2011) Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochem 46:202–209

    Article  CAS  Google Scholar 

  • Macaulay BM, Rees D (2014) Bioremediation of oil spills: a review of challenges for research advancement. Ann Environ Sci 8:9–37

    Google Scholar 

  • MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic mycobacterium. Process Biochem 40:1799–1805

    Article  CAS  Google Scholar 

  • Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA (2018) Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12. 3 Biotech 8(2):108. https://doi.org/10.1007/s13205-018-1123-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad 84:185–191

    Article  CAS  Google Scholar 

  • Mazuki TAT, Shukor MY, Ahmad SA (2019) Bioremediation of phenol in Antarctic: a mini review. Malays J Biochem Mol Biol 22:1–6

    Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Dominico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull 49:405–409

    Article  CAS  PubMed  Google Scholar 

  • Montone RC, Taniguchi S, Colabuono FI, Martins CC, Cipro CVZ, Barroso HS, da Silva J, Bicego MC, Weber RR (2015) Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay—an Antarctic specially managed area. Mar Pollut Bull 106:377–382

    Article  CAS  Google Scholar 

  • Moscoso F, Teijiz I, Deive FJ, Sanroman MA (2012) Efficient PAHs biodegradation by a microbial consortium at flask and bioreactor scale. Biores Technol 119:270–276

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  PubMed  Google Scholar 

  • Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2015) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res Int 22:4725–4735

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400–406

    Article  PubMed  CAS  Google Scholar 

  • Nor NM, Mohamed MS, Loh TC, Foo HL, Rahim RA, Tan JS, Mohamad R (2017) Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol Biotechnol Equip 31:935–947

    Article  CAS  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Pruden A, Sedran M, Suidan M, Venosa A (2003) Biodegradation of MTBE and BTEX in an aerobic fluidized bed. Water Sci Technol 47:123–128

    Article  CAS  PubMed  Google Scholar 

  • Prus W, Fabianska MJ, Labno R (2015) Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). Sci Total Environ 518–519:266–279

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microb 11:2477–2490

    Article  CAS  Google Scholar 

  • Ruberto LAM, Vazquez S, Lobalbo A, MacCormack WP (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17:47–56

    Article  Google Scholar 

  • Ryu HW, Yang HJ, Youn-Joo A, Kyung-Suk C (2006) Isolation and characterisation of psychrotrophic and halotolerant Rhodococcus sp. YHLT-2. J Microbiol Biotechnol 16:605–612

    CAS  Google Scholar 

  • Shukor MY, Dahalan FA, Jusoh AZ, Muse R, Shamaan NA, Syed MA (2009) Characterisation of a diesel-degrading strain isolated from a hydrocarbon-contaminated site. J Environ Biol 30:145–150

    CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speight JG (2014) The chemistry and technology of petroleum, 5th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Sun G, Zhang J, Li H (2014) Structural behaviour of waxy crude oil emulsion gels. Energy Fuels 28:3718–3729

    Article  CAS  Google Scholar 

  • Suzuki T, Yamaya S (2005) Removal of hydrocarbons in a rotating biological contactor with biodrum. Process Biochem 40:3429–3433

    Article  CAS  Google Scholar 

  • Szopinska M, Szuminska D, Bialik RJ, Dymerski T, Rosenberg E, Polkowska Z (2019) Determination of polycyclic aromatic hydrocarbons (PAHs) and other organic pollutants in freshwaters on the western shore of Admiralty Bay (King George Island, Maritime Antarctica). Environ Sci Pollut Res 26:18143–18161

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward PO (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez S, Monien P, Minetti RP, Jurgens J, Curtosi A, Primitz JV, Frickenhaus S, Abele D, MacCormack W, Helmke E (2017) Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica. Sci Total Environ 606:26–37

    Article  CAS  Google Scholar 

  • Wang L, Camus AC, Dong W, Thornton C, Willet KL (2010) Expression of CYP1C1 and CYP1A in Fundulus heteroclitus during PAH-induced carcinogenesis. Aquat Toxicol 99:439–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterhouse EJ (2001) Ross Sea region 2001: a state of the environment report for the Ross Sea region of Antarctica, chapter 2. New Zealand Antarctic Institute (Antarctica New Zealand), Christchurch, NZ

  • Yao Y, Meng X-Z, Wu C-C, Bao L-J, Wang F, Wu F-C, Zeng EY (2016) Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes. Environ Pollut 213:412–419

    Article  CAS  PubMed  Google Scholar 

  • Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, Dahalan FA, Shukor MY (2016) Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. J Environ Manage 183:182–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was financially supported by Putra‒IPM fund under the research grant attached to S.A. Ahmad (GP-Matching Grant/2016/9300430, GP-Matching Grant/2017/9300436, GPM-2018/9660000 and GPM-2019/ 9678900) disbursed by Universiti Putra Malaysia (UPM) and YPASM Smart Partnership Initiative by Sultan Mizan Antarctic Research Foundation (YPASM). P. Convey is supported by NERC core funding to the BAS ‘Biodiversity, Ecosystems and Adaptation’ Team. C.G. Fuentes is supported by Centro de Investigacion y Monitoreo Ambiental Antàrctico (CIMAA) Project. The authors would like to thank Assoc. Prof. Dr. Siti Aisyah Alias from University of Malaya, Malaysia and Professor Gerardo Gonzalez-Rocha from Universidad de Concepcion for the help of the first study. The authors also would like to thank Chilean Army and the Antarctic General Bernardo O'Higgins Station staff, Instituto Antártico Chileno (INACH) and National Antarctic Research Centre (NARC). We also thank the Public Service Department of Malaysia (JPA) for granting a master programme scholarship to Ahmad Fareez Ahmad Roslee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Additional information

Communicated by A. Driessen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roslee, A.F.A., Zakaria, N.N., Convey, P. et al. Statistical optimisation of growth conditions and diesel degradation by the Antarctic bacterium, Rhodococcus sp. strain AQ5‒07. Extremophiles 24, 277–291 (2020). https://doi.org/10.1007/s00792-019-01153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01153-0

Keywords

Navigation