Skip to main content
Log in

Ammonium Toxicity in Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Although an excellent nitrogen source for most bacteria, ammonium was—in analogy to plant and animal systems—assumed be detrimental to bacteria when present in high concentrations. In this study, we examined the effect of molar ammonium concentrations on different model bacteria, namely, Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The studied bacteria are highly resistant to ammonium. When growth was impaired upon addition of molar (NH4)2SO4 concentrations, this was not caused by an ammonium-specific effect but was due to an enhanced osmolarity or increased ionic strength of the medium. Therefore, it was concluded that ammonium is not detrimental to C. glutamicum and other bacteria even when present in molar concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid producing bacteria. J Gen Microbiol 13:279–301

    Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. New York: Greene Publishing Associates and Wiley Interscience, John Wiley and Sons

    Google Scholar 

  3. Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    CAS  PubMed  Google Scholar 

  4. Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH +4 cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  CAS  PubMed  Google Scholar 

  5. Britto DT, Konzucker HJ (2002) NH +4 toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  6. Burkovski A (2003) I do it my way: Regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 179:83–88

    CAS  PubMed  Google Scholar 

  7. Burkovski A (2003) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 27:617–628

    Article  CAS  PubMed  Google Scholar 

  8. Burkovski A (2005) Nitrogen metabolism and its regulation. In: Bott M, Eggeling L (eds) Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press, p 99–118

    Google Scholar 

  9. Davis BD, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60:17–28

    CAS  PubMed  Google Scholar 

  10. Detsch C, Stülke J (2003) Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology 149:3289–3297

    Article  CAS  PubMed  Google Scholar 

  11. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  12. Jakoby M, Tesch M, Sahm H, Krämer R, Burkovski A (1997) Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154:81–88

    CAS  PubMed  Google Scholar 

  13. Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977

    Article  CAS  PubMed  Google Scholar 

  14. Javelle A, Thomas G, Marini A-M, Krämer R, Merrick M (2005) In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J 390:215–222

    CAS  PubMed  Google Scholar 

  15. Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    CAS  PubMed  Google Scholar 

  16. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    CAS  PubMed  Google Scholar 

  17. Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJW, Stroud RM (2005) Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 A. Science 305:1587–1594

    Google Scholar 

  18. Kleiner D (1981) The transport of NH3 and NH +4 across biological membranes. Biochim Biophys Acta 639:41–52

    CAS  PubMed  Google Scholar 

  19. Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    CAS  Google Scholar 

  20. Kleiner D (1993) Ammonium transport systems—an overview. In: Bakker EP (ed) Alkali cation transport systems in prokaryotes. Boca Raton, FL: CRC Press

    Google Scholar 

  21. Lindroth P, Mopper K (1979) High performance liquid chromatography determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674

    Article  CAS  Google Scholar 

  22. Martinelle K, Häggström L (1993) Mechanisms of ammonia and ammonium ion toxicity in animal cells: Transport across cell membranes. J Biotechnol 30:339–350

    Article  CAS  PubMed  Google Scholar 

  23. Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: Role of Amt and AmtB. Microbiology 147:135–143

    CAS  PubMed  Google Scholar 

  24. Nolden L, Farwick M, Krämer R, Burkovski A (2001) Glutamine synthetases in Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91–98

    CAS  PubMed  Google Scholar 

  25. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    CAS  PubMed  Google Scholar 

  26. Ritchie RJ, Gibson J (1987) Permeability of ammonia, methylamine and ethylamine in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC7942. J Membr Biol 95:131–142

    CAS  Google Scholar 

  27. Ritchie RJ, Gibson J (1987) Permeability of ammonia and amines in Rhodobacter spheroides and Bacillus firmus. Arch Biochem Biophys 258:322–341

    Article  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  29. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  30. Siewe RM, Weil B, Krämer R (1995) Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164:98–103

    Article  CAS  Google Scholar 

  31. Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403

    CAS  PubMed  Google Scholar 

  32. Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034

    Article  CAS  PubMed  Google Scholar 

  33. Soupene E, Lee H, Kustu S (2002) Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926–3931

    CAS  PubMed  Google Scholar 

  34. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    PubMed  Google Scholar 

  35. von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261

    Google Scholar 

  36. von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in plants, yeast and bacteria. Trends Curr Genet 9:95–120

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Stephanie Kadow and Christine Eilender for technical support and Reinhard Krämer for continuous interest and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Burkovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T., Walter, B., Wirtz, A. et al. Ammonium Toxicity in Bacteria. Curr Microbiol 52, 400–406 (2006). https://doi.org/10.1007/s00284-005-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0370-x

Keywords

Navigation