Skip to main content

Advertisement

Log in

Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydrocarbon catabolic genes were investigated in soils and sediments in nine different locations around Syowa Station, Antarctica, using conventional PCR, real-time PCR, cloning, and sequencing analysis. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD)-coding genes from both Gram-positive and Gram-negative bacteria were observed. Clone libraries of Gram-positive RHD genes were related to (i) nidA3 of Mycobacterium sp. py146, (ii) pdoA of Terrabacter sp. HH4, (iii) nidA of Diaphorobacter sp. KOTLB, and (iv) pdoA2 of Mycobacterium sp. CH-2, with 95–99 % similarity. Clone libraries of Gram-negative RHD genes were related to the following: (i) naphthalene dioxygenase of Burkholderia glathei, (ii) phnAc of Burkholderia sartisoli, and (iii) RHD alpha subunit of uncultured bacterium, with 41–46 % similarity. Interestingly, the diversity of the Gram-positive RHD genes found around this area was higher than those of the Gram-negative RHD genes. Real-time PCR showed different abundance of dioxygenase genes between locations. Moreover, the PCR-denaturing gradient gel electrophoresis (DGGE) profile demonstrated diverse bacterial populations, according to their location. Forty dominant fragments in the DGGE profiles were excised and sequenced. All of the sequences belonged to ten bacterial phyla: Proteobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Cyanobacteria, Chlorobium, and Acidobacteria. In addition, the bacterial genus Sphingomonas, which has been suggested to be one of the major PAH degraders in the environment, was observed in some locations. The results demonstrated that indigenous bacteria have the potential ability to degrade PAHs and provided information to support the conclusion that bioremediation processes can occur in the Antarctic soils and sediments studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abell GCJ, Bowman JP (2005) Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51:265–277

    Article  CAS  Google Scholar 

  • Aislabie J, Foght JM (2010) Response of polar soil bacterial communities to fuel spills. In: Bej AK, Aislabie J, Atlas RM (eds) The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments, Taylor & Francis, Florida, pp 215–230

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1274

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–149

    CAS  Google Scholar 

  • Arensköter M, Broker D, Steinbüchel A (2004) Biology of metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Meth 73:148–159

    Article  Google Scholar 

  • Churchill PF, Morgan AC, Kitchens E (2008) Characterization of a pyrene-degrading Mycobacterium sp. strain CH-2. J Environ Sci Health B 43:698–706

    Article  CAS  Google Scholar 

  • Cunliffe M, Kawasaki A, Fellows E, Kertesz MA (2006) Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in aged polycyclic aromatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 58:364–372

    Article  CAS  Google Scholar 

  • Das R, Kazy SK (2014) Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res. doi:10.1007/s1135601426402

    Google Scholar 

  • DeBruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41:5426–5432

    Article  CAS  Google Scholar 

  • Delille D, Coulon F (2008) Comparative mesocosm study of biostimulation efficiency in two different oil-amended sub-Antarctic soils. Microb Ecol 56:243–252

    Article  Google Scholar 

  • Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res 18:12–30

    Article  Google Scholar 

  • Flocco CG, Gomes NCM, Cormack WM, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 11:700–714

    Article  CAS  Google Scholar 

  • Gauthier MJ, Lafay B, Christen T, Fernandez L, Acquaviva M, Bonin PC, Betrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 43:568–576

    Article  Google Scholar 

  • Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H, Kawahara K (2002) Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178:45–52

    Article  CAS  Google Scholar 

  • Junca H, Pieper DH (2004) Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6:95–110

    Article  CAS  Google Scholar 

  • Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012a) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9

    Article  Google Scholar 

  • Jurelevicius D, Cotta SR, Peixoto R, Rosado AS, Seldin L (2012b) Distribution of alkane-degrading bacterial communities in soils from King George Island, Maritime Antarctic. Eur J Soil Biol 51:37–44

    Article  CAS  Google Scholar 

  • Klankeo P, Nopcharoenkul W, Pinyakong O (2009) Two novel pyrene-degrading Diaphorobacter sp. and Pseudomonas sp. isolated from soil. J Biosci Bioeng 108:488–495

    Article  CAS  Google Scholar 

  • Kweon O, Kim SJ, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske non heme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 1:1–11

    Article  Google Scholar 

  • Lau EV, Gan S, Ng HK (2010) Extraction techniques for polyaromatic hydrocarbons in soils. Int J Anal Chem. doi:10.1155/2010/398381

    Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Verstraete W, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strain in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    Article  CAS  Google Scholar 

  • Liu C, Chen CX, Zhang XY, Yu Y, Liu A, Li GW, Chen XL, Chen B, Zhou BC, Zhang YZ (2012) Marinobacter antarcticus sp. nov., a halotolerant bacterium isolated from Antarctic intertidal sandy sediment. Int J Syst Evol Microbiol 62:1838–1844

    Article  CAS  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  CAS  Google Scholar 

  • Marcos MS, Lozada M, Dionisi HM (2009) Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic marine sediments. Lett Appl Microbiol 49:602–608

    Article  CAS  Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  Google Scholar 

  • Muangchinda C, Pansri R, Wongwongsee W, Pinyakong O (2013) Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. J Appl Microbiol 114:1311–1324

    Article  CAS  Google Scholar 

  • Panicker G, Mojib N, Aislabie J, Bej AK (2010) Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie Van Leeuwenhoek 97:275–287

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145

    Article  CAS  Google Scholar 

  • Ruberto L, Vazquez SC, Mac Cormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegrad 52:115–125

    Article  CAS  Google Scholar 

  • Ruberto LAM, Vazquez SC, Curtosi A, Mestre MC, Pelletier E, Mac Cormack WP (2006) Phenanthrene biodegradation in soils using an Antarctic bacterial consortium. Biorem J 10:191–201

    Article  CAS  Google Scholar 

  • Sipila TP, Riisio H, Yrjala K (2006) Novel upper meta-pathway extradiol dioxygenase gene diversity in polluted soil. FEMS Microbiol Ecol 58:134–144

    Article  CAS  Google Scholar 

  • Suenaga H, Mizuta S, Miyazaki K (2009) The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol 69:472–480

    Article  CAS  Google Scholar 

  • US EPA Method 3500C (2007) Organic extraction and sample preparation. Revision 3. February, 2007

  • US EPA Method 3540C (1996) Soxhlet extraction. Revision 3. December, 1996

  • US EPA Method 8310 (1986) Polyaromatic hydrocarbons. September, 1986

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267

    Article  CAS  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  Google Scholar 

  • Zhang S, Wan R, Wang Q, Xie S (2011) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad 65:1224–1228

    Article  CAS  Google Scholar 

  • Zhou HW, Guo CL, Wong YS, Tam NFY (2006) Genetic diversity of dioxygenase genes in PAH-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262:148–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Polar Research (Japan); L’Oreal (Thailand) Ltd.; Faculty of Science, Chulalongkorn University; and National Research University Project of the Office of Commission for Higher Education and Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University—Climate Change Cluster (CC1043A). We also would like to thank all the members of the 51st Japanese Antarctic Research Expedition (JARE-51) for their field support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Pinyakong.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 198 kb)

Fig. S2

(DOCX 162 kb)

Table S1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muangchinda, C., Chavanich, S., Viyakarn, V. et al. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res 22, 4725–4735 (2015). https://doi.org/10.1007/s11356-014-3721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3721-y

Keywords

Navigation