Skip to main content

Advertisement

Log in

Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AM1 and AM2:

Los Azufres mud samples (AM1, 87 °C and AM2, 37 °C)

AB1 and AB2:

Los Azufres microbial mat samples (27 and 35 °C, respectively)

AW:

Los Azufres water sample (36 °C at the surface)

AZLFE3:

Isolated strain from AM2 sample, related to Desulfurella kamchatkensis

References

  • Aguilar Y, Vargas VH, Verma SP (1987) Composición química (elementos mayores) de los magmas en el cinturón volcánico mexicano. Geofis Int 26:195–272

    Google Scholar 

  • Anderson A (1979) Mercury in soils. In: Nriagu JO (ed) The biogeochemistry of mercury in the environment. Elsevier, Amsterdam, pp 79–112

    Google Scholar 

  • Bagnato E, Aiuppa A, Parello F, D’Alessandro W, Allard PS (2009a) Calabrese mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles). J Volcanol Geotherm Res 179:96–106

    Article  CAS  Google Scholar 

  • Bagnato E, Parello F, Valenza M, Caliro S (2009b) Mercury content and speciation in the Phlegrean Fields volcanic complex: evidence from hydrothermal system and fumaroles. J Volcanol Geotherm Res 187:250–260

    Article  CAS  Google Scholar 

  • Bagnato E, Allard P, Parello F, Aiuppa A, Calabrese S, Hammouya G (2009c) Mercury gas emissions from La Soufrière volcano, Guadeloupe island (Lesser Antilles). Chem Geol 266:267–273

    Article  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Ciencia e Cultura 50:255–260

    CAS  Google Scholar 

  • Birkle P, Merkel B (2001) Mineralogical–chemical composition and environmental risk potential of pond sediments at the geothermal field of Los Azufres, Mexico. Environ Geol 41:583–592

    Google Scholar 

  • Birkle P, Merkle B (2000) Environmental impact by spill of geothermal fluids at the geothermal field of Los Azufres, Michoacán, Mexico. Water Air Soil Pollut 124:371–410

    Article  CAS  Google Scholar 

  • Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brito EMS, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyrouse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments of Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  CAS  PubMed  Google Scholar 

  • Brito EMS, Andrade LH, Caretta CA, Duran R (2007) Microorganisms bioprospection: a new tendency in microbial ecology. In: Pawley LE (ed) Leading-edge environmental biodegradation research, 1st edn. Nova Sc Publ, New York, pp 199–222

    Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brito EMS, Piñón-Castillo H, Guyoneaud R, Caretta CA, Gutiérrez-Corona, JF, Duran R, Reyna-López G, Nevárez-Moorillón VG, Fahy A, Goñi-Urriza M (2013) Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl Microbiol Biotechnol 97:369–378

    Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320

    Article  CAS  PubMed  Google Scholar 

  • Camerlenghi A, Cita MB, Della Vedova B, Fusi N, Mirabile L, Pellis G (1995) Geophysical evidence of mud diapirism on the mediterranean ridge accretionary complex. Mar Geophys Res 17:115–141

    Article  Google Scholar 

  • Caretta CA, Brito EMS (2011) In silico restriction for identifying microbial communities in T-RFLP fingerprints. J Comp Interdiscip Sci 2:123–129

    Google Scholar 

  • Castorena G, Mugica V, Le Borgne S, Acun ME, Bustos-Jaimes I, Aburto J (2006) Carbazole biodegradation in gas oil/water biphasic media by a new isolated bacterium Burkholderia sp. strain IMP5GC. J Appl Microbiol 100:739–745

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio [soil and water organisms]. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  • Christenson BW, Mroczek EK (2003) Potential reaction pathways of Hg in some New Zealand hydrothermal environments. Soc Econ Geol 10:111–132

    Google Scholar 

  • Clingenpeel S, Macur RE, Kan J, Inskeep WP, Lovalvo D, Varley J, Mathur E, Nealson K, Gorby Y, Jiang H, LaFracois T, McDermott TR (2011) Yellowstone Lake: high-energy geochemistry and rich bacterial diversity. Environ Microbiol 13:2172–2185

    Article  PubMed  Google Scholar 

  • Fliermans CB, Brock TD (1972) Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol 111:343–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folman LB, Postma J, van Veen JA (2003) Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiol Res 158:107–115

    Article  CAS  PubMed  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2763

    Article  CAS  Google Scholar 

  • Gomez-Alvarez V, King GM, Nusslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS microbial Ecol 60:60–73

    Article  CAS  Google Scholar 

  • Good IJ (1953) On the population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  • Grüning B, Hills G, Veit T, Weitemeyer C, Frave-Bulle O, Nguyen H-K, Ravot G (2009) Thermostable esterases from thermophilic bacteria. US Paten 7,595,181 B2

  • Guidry SA, Chafetz HS (2002) Factors governing subaqueous siliceous sinter precipitation in hot springs: examples from Yellowstone National Park, USA. Sedimentology 49:1253–1267

    Article  CAS  Google Scholar 

  • Gumerov VM, Mardanov AV, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV (2011) Molecular analysis of microbial diversity in the Zavarzin spring, Uzon Caldera, Kamchatka. Microbiol 80:244–251

    Article  CAS  Google Scholar 

  • Guyoneaud R, Matheron R, Baulaigue R, Podeur K, Hirschler A, Caumette P (1996) Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic coasts (Prévost Lagoon, Arcachon Bay, Certes Fishponds). Hydrobiologia 329:33–43

    Article  CAS  Google Scholar 

  • Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Réa A, Willison J, Duran R, Liesack W, Herbert R, Matheron R, Caumette P (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carrol S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiol 157:1551–1564

    Article  CAS  Google Scholar 

  • Hetzer A, Morgan HW, McDonald IR, Daughney CJ (2007) Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11:605–614

    Article  PubMed  Google Scholar 

  • Hewson I, Fuhrman JA (2006) Improved strategy for comparing microbial assemblage fingerprints. Microb Ecol 51:147–153

    Article  PubMed  Google Scholar 

  • Hovland M, Hill A, Stokes D (1997) The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology 21:1–15

    Article  Google Scholar 

  • Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563

    Article  PubMed  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinisruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imhoff JF (2001) Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1863–1866

    Article  CAS  PubMed  Google Scholar 

  • Inagaki F, Hayashi S, Doi K, Motomura Y, Izawa E, Ogata S (1997) Microbial participation in the formation of siliceous deposits from geothermal water and analysis of the extremely thermophilic bacterial community. FEMS Microbiol Ecol 24:41–48

    Article  CAS  Google Scholar 

  • Jenne EA (1970) Atmospheric and fluvial transport of mercury. Mercury in the environment. Geol Surv Prof 713:40–45

    Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338:3–14

    Article  CAS  Google Scholar 

  • Jones B, Renaut RW (1996) Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90 °C: evidence from Kenya and New Zealand. Can J Earth Sci 33:72–83

    Article  CAS  Google Scholar 

  • Jones B, Renaut RW (1997) Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile. Sedimentology 44:287–304

    Article  Google Scholar 

  • Jones B, Renaut RW, Rosen MR (2000) Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios 15:450–475

    Article  Google Scholar 

  • Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocess for the treatment of acid mine drainage and recovery of metals. Eng Life Sci 7:541–564

    Article  CAS  Google Scholar 

  • Kimura H, Sugihara M, Yamamoto H, Patel BK, Kato K, Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9:407–414

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) rRNA sequencing. In: Stackebrandt GME (ed) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Im W-T, Kim MK, Yang D-C (2006) Lysobacter koreensis sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 56:231–235

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437

    Article  CAS  PubMed  Google Scholar 

  • Malm O, Pfeiffer WC, Fiszman M, Azcue JMP (1989) Heavy metal concentrations and availability in the bottom sediments of the Paraiba do Sul-Guandu river system, RJ, Brazil. Environ Technol Lett 10:675–680

    Article  CAS  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Hippe H, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (1998) Desulfurella karnchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int J Syst Bacteriol 48:475–479

    Article  PubMed  Google Scholar 

  • Newton RS, Cunningham RC, Schubert CE (1980) Mud volcanoes and pockmarks: seafloor engineering hazards or geological curiosities? Proc Offshore Technol Conf Pap OTC 3729:425–435

    Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Article  CAS  Google Scholar 

  • Paissé S, Coulon F, Goñi-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  PubMed  Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    Article  CAS  PubMed  Google Scholar 

  • Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV (2008) Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58:370–374

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Fernandes J, Fernandes N, Oliveira F, Cadete M (2007) Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park. Appl Environ Microbiol 73:5071–5073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D (2010) Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 14:501–514

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultze-Lam S, Ferris FG, Konhauser KO, Wiese RG (1995) In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can J Earth Sci 32:2021–2026

    Article  Google Scholar 

  • Silva AP, Alves MCC (2006) Como iniciar a validação de métodos analíticos. ENQUALAB-2006-Congresso e Feira da Qualidade em Metrologia: 8–15

  • Tobler DJ, Benning LG (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15:473–485

    Article  PubMed  Google Scholar 

  • Tobler DJ, Stefansson A, Benning LG (2008) In situ grown silica sinters in Icelandic geothermal areas. Geobiology 6:481–502

    Article  CAS  PubMed  Google Scholar 

  • Tomova I, Stoilova-Disheva M, Lyutskanova D, Pascual J, Petrov P, Kambourova M (2010) Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria. World J Microbiol Biotechnol 26:2019–2028

    Article  Google Scholar 

  • Torres-Sanchez R, Magaña-Vazquez A, Sanchez-Yañez JM, Martinez-Gomez L (1996) High temperature microbial corrosion in the condenser of a geothermal electric power unit. CORROSION96 The NACE Int Ann Conf Exp, No. 293, pp 1–14

  • Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49:277–282

    Article  CAS  PubMed  Google Scholar 

  • US EPA (1990) National oil and hazardous substances pollution contingency Plan, 40 CRF Part 300. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Varekamp JC, Buseck PR (1984) The speciation of mercury in hydrothermal systems, with applications for ore deposition. Geochim Cosmochim Acta 48:177–186

    Article  CAS  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178:402–405

    Article  CAS  PubMed  Google Scholar 

  • WHO (1993) WHO guidelines for drinking water quality. http://www.who.int/water_sanitation_health/GDWQ/index.htlm. Accessed 12 October 2011

  • Yakubov AA, Ali-Zade AA, Zeinalov MM (1971) Gryazevye vulkany Azerbaidzhanskoi SSR: Atlas (mud volcanoes of the Azerbaijan SSR: Atlas). Azerbaijan Academy of Sciences, Baku

    Google Scholar 

  • Yang H-M, Lou K, Sun J, Zhang T, Ma XL (2012) Prokaryotic diversity of an active mud volcano in the Usu city of Xinjiang, China. J Basic Microbiol 52:79–85

    Article  PubMed  Google Scholar 

  • Yassin AF, Chen WM, Hupfer H, Siering C, Kroppenstedt RM, Arun AB, Lai W-A, Shen F-T, Rekha PD, Young CC (2007) Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 57:1131–1136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ECOS-NORD-SEP-CONACyT-ANUIES (M07A01), SEP-PROMEP (UGTO-NPTC-164), CNPq-CONACyT (491022/2008-5), ANR-CONACyT (C0011-FR12-01, No. 188775) and Universidad de Guanajuato-DAIP (0115/2011 and 0195/2013). We acknowledge financial support from the Aquitaine Regional Government Council (France). N. Villegas-Negrete and I.A. Sotelo-González received a fellowship from UG-DAIP, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elcia M. S. Brito.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 5416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brito, E.M.S., Villegas-Negrete, N., Sotelo-González, I.A. et al. Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers. Extremophiles 18, 385–398 (2014). https://doi.org/10.1007/s00792-013-0624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0624-7

Keywords

Navigation